Магнитная индукция сердечника трансформатора

Автор: | 12.03.2024

Итак, мы решили поразвлечься и всерьёз сваять что-нибудь стоящее своими руками, как то: индуктивный фильтр для блока питания, дроссель для усилительного каскада, выходной трансформатор для однотактного УНЧ, или фиг его знает — чего ещё похуже.
Что объединяет этих жертв нашего волеизъявления?
Каждое из перечисленных моточных изделий содержит магнитомягкий магнитопровод, и через каждое из них протекает постоянный ток. И если к переменному току, даже значительных величин, магнитопровод относится сдержанно-положительно, то к постоянке питает явную антипатию и может резко войти в насыщение от её переизбытка.
При насыщении сердечника его относительная магнитная проницаемость резко уменьшается, что влечёт за собой пропорциональное уменьшение индуктивности изделия.

На этой странице порассуждаем о тороидальных магнитопроводах из ферритов, распылённого железа, электротехнической стали и их способности противостоять постоянному току.

Для наглядности рассмотрим график зависимости B от H , называемый петлёй гистерезиса, для распространённого, где-то даже народного, феррита марки N87 фирмы EPCOS.

ferr nas1 ДомостройЗдесь:
H — напряжённость магнитного поля, а
B — магнитная индукция в сердечнике.

Зависимость приведена при температуре изделия +25 гр.С.

Интересующие нас параметры из datasheet-а производителя:

Начальная магнитная проницаемость —
µ = 2200 ,
Магнитная индукция насыщения при H=1200 А/м — Bнас = 0,490 Т .

Если внимательно присмотреться к графику, то легко заметить, что в области малых и средних индукций зависимость практически линейна и её наклон примерно равен µ . Именно на этот участок в большинстве случаев и должен приходиться диапазон рабочих индукций.
При дальнейшем повышении напря- жённости магнитного поля магнитная проницаемость начинает быстро падать, пока не наступает момент, при котором дальнейший рост магнитной индукции в сердечнике стопорится на определённой величине. В спецификациях это величина приводится, как значение магнитной индукции насыщения — Bнас , или Bs , т.е. величина, при которой значение магнитной проницаемости падает до неприлично малых значений.

Читайте также  Курица на тарелке рисунок

Так что давайте без лишних прелюдий и телодвижений сделаем фундаментальный вывод — для нормальной работы катушки, намотанной на магнитопроводе, рабочие значения магнитной индукция в сердечнике не должны превышать величину 0,75 — 0,8 от значения справочной характеристики Bнас (Bs) .

Переходим к незамысловатым формулам!

Магнитная индукция в сердечнике равна:
B = µ×µ0×n×I/l , где:
µ — магнитная проницаемость сердечника,
µ0 = 4π×10 -7 (Гн/м) — физическая константа, называемая магнитной постоянной,
n — количество витков обмотки,
I — ток в обмотке,
l — средняя длина магнитного контура.

Поскольку рабочий режим магнитопровода мы выбираем в линейной области петли гестерезиса, то в качестве значения µ можно использовать паспортную характеристику начальной магнитной проницаемости сердечника.

Теперь можно рисовать калькулятор для расчёта магнитной индукции в катушке с учетом выбранного типа сердечника и конкретного количества витков обмотки.

Для удобства восприятия, помещу сюда и значение индуктивности полученного моточного изделия. Формулы для вычислений этого параметра выглядят следующим образом:
L=0,0002×µ×h×n 2 ×ln(Dвнешн/Dвнутр) при соблюдении условия Dвнешн/Dвнутр>1,75 ,
L=0,0004×µ×h×n 2 ×(Dвнешн-Dвнутр)/(Dвнешн+Dвнутр) при Dвнешн/Dвнутр

ТАБЛИЦА РАСЧЁТА МАГНИТНОЙ ИНДУКЦИИ В КАТУШКЕ С ТОРОИДАЛЬНЫМ СЕРДЕЧНИКОМ.

Увы, но значительных токов через катушки на ферритовых кольцах, или торах из трансформаторной стали нам пропустить не удастся — нужны танцы с бубнами в виде немагнитных воздушных зазоров.
Другое дело — сердечники из распылённого железа, представляющие собой магнитопровод с немагнитными зазорами, технологически распределёнными по всему объёму магнитопровода. Их очевидный плюс — высокая индукция насыщения, минус — малые величины магнитной проницаемости.

В связи с этим, в некоторых случаях (в основном на низких частотах) предпочтительным является использование именно сердечников из ферритов (или железа) с пропилом для создания малого воздушного зазора. Данная мера позволяет в значительной мере увеличить величину допустимых токов через катушку без ввода магнитопровода в режим насыщения. Длина этого воздушного зазора позволяет регулировать как величину максимально-допустимой напряжённости магнитного поля в сердечнике, так и параметр изменившейся магнитной проницаемости, называемой эквивалентной магнитной проницаемостью сердечника с зазором — µэф . Значение этого параметра вычисляется по формуле:
µэф = µ/(1+lз×µ/l) , где:
µ — начальная магнитная проницаемость сердечника,
l — средняя длина магнитного контура,
lз — длина воздушного зазора (толщина пропила).

Давайте посчитаем этот параметр.

РАСЧЁТ ЭКВИВАЛЕНТНОЙ МАГНИТНОЙ ПРОНИЦАЕМОСТИ СЕРДЕЧНИКА С ЗАЗОРОМ.

Таблица даёт приблизительную, но, в большинстве своём, приемлемую точность расчёта при величинах длины воздушного зазора 0,2-2 мм.

Для Ш-образных сердечников в качестве внутреннего и внешнего диаметров следует вводить справочную характеристику длины магнитного контура le .

Определив ниже магнитную проницаемость сердечника с зазором, следует ввести это значение в предыдущий калькулятор и заново произвести вычисления магнитной индукции и индуктивности катушки.

Для наглядности приведу два графика петли гистерезиса Ш-образного ферритового сердечника марки N87 без немагнитного воздушного зазора и с зазором около 1 мм. Феррит ETD 59/31/22, достаточно крупный, с средней длиной магнитного контура le = 139 мм.
Механизмы влияния зазора у Ш-образных и тороидальных сердечников абсолютно идентичны.

ferr nas2 Домострой

Эквивалентная магнитная проницаемость сердечника с зазором уменьшилась и составила величину 160 единиц. Соответственно, уменьшился и наклон петли, позволяя сердечнику работать при гораздо больших значениях напряжённости магнитного поля вдали от области магнитной индукции насыщения сердечника.
А учитывая то, что значение напряжённости H прямо пропорционально, протекающему через катушку току, можно с уверенностью сказать, что область безопасных индукций теперь соответствует более чем на порядок большим токам в обмотке.

Линейная область петли гистерезиса также заметно увеличилась, что позволяет увеличить максимальные рабочие значения магнитной индукция в сердечнике вплоть до 0,85-0,9 от значения справочной характеристики Bнас (Bs).

Максимальная индукция сердечника трансформатора

При заданной мощности габариты и масса трансформатора будут минимальны, если индукция в его магнитопроводе достигает максимально-допустимого для выбранного материала значения Но обычно эта величина неизвестна Чтобы избежать неожиданностей, индукцию обычно занижают, что приводит к неоправданному увеличению размеров трансформатора

Воспользовавшись приводимой ниже методикой, можно определить магнитные характеристики любой трансформаторной стали Из этой стали собирают "экспериментальный" магнитопровод сечением 5. 10 кв.см (произведение размеров а и b) и наматывают на один из его кернов 50. 100 витков мягкого изолированного провода сечением 1,5. 2,5 кв.мм. Для дальнейших расчетов необходимо найти по формуле

Iср = 2h + 2c + 3,14*a

среднюю длину магнитной силовой линии и измерить активное сопротивление обмотки rоб Далее по схеме, показанной на рисунке, собирают испытательную установку Т1 —лабораторный регулируемый автотрансформатор (ЛАТР), L1 — обмотка на "экспериментальном" магнитопроводе. Габаритная мощность понижающего трансформатора Т2 — не менее 63 ВА, коэффициент трансформации — 8. 10

svar26 4 Домостройsvar26 5 Домострой

Постепенно увеличивая напряжение, строят зависимость индукции в магнитопроводе В, Тл, от напряженности магнитного поля Н А/м, подобную показанной ниже.

svar26 6 Домострой

Вычисляя эти величины по формулам

svar26f1 Домострой

где U и I — показания вольтметра PV1, В, и амперметра РА1, A; F — частота, Гц, S — площадь сечения "экспериментального" магнитопровода, см2 , W — число витков его обмотки. Из полученного графика находят, как показано на рисунке, индукцию насыщения Bs , максимальную индукцию Bm и максимальную напряженность переменного магнитного поля Hm .

Проектирование силового импульсного трансформатора. (10+)

Задача, которая стоит при проектировании силового импульсного трансформатора, проста. Необходимо получить устройство минимальных размеров, с минимально возможным числом витков обмотки. Но при этом сердечник не должен насыщаться. Эффект насыщения возникает из-за того, что материал сердечника под действием магнитного поля намагничивается. Степень намагничивания может быть разная. Но есть некоторая предельная степень намагничивания, больше которой сердечник намагнититься не может. Достижение этой величины приводит к тому, что дальше индуктивность катушек трансформатора резко падает, а ток через них резко растет. Более того, даже приближение к этой грани полного намагничивания крайне нежелательно, так как при этом характеристики трансформатора ухудшаются, а потери на нагрев растут.

p 2522 Домострой

Материал сердечников трансформатора

Нередко считается, что импульсные трансформаторы нужно выполнять на ферритах. Это верно лишь отчасти. Многие импульсные устройства работают на довольно низких частотах. Если частота меньше 3 кГц, то однозначно оправданным выбором будет трансформаторное железо. На частотах 3 — 7 кГц выбор не очевиден. Для частот выше 7 кГц потребуются ферриты. Сейчас появились сердечники из порошкового железа. Они сочетают в себе преимущества феррита и трансформаторного железа и хорошо показывают себя на частотах до 100 кГц. Однако они пока малодоступны.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Теория проектирования трансформатора

Взглянем на формулы:

[Индукция, Тл] = 1.257E-3 * [Магнитная проницаемость сердечника] * [Сила тока, А] * [Количество витков] / [Длина средней магнитной линии сердечника, мм]

[Индуктивность, Гн] = 1.257E-9 * [Магнитная проницаемость сердечника] * [Площадь сечения магнитопровода, кв. мм] * [количество витков]^2 / [Длина средней магнитной линии сердечника, мм]

Индукция в этих формулах как раз и показывает, насколько будет намагничиваться сердечник. Индукция насыщения трансформаторного железа составляет 1 Тл (Тесла). Для ферритов эта величина равна 0.3 Тл.

Для работы трансформатора обычно выбирается максимально приемлемая индукция меньше, чем индукция насыщения. Для железа берется 0.5 Тл. Для ферритов 0.15 Тл при частотах до 100 кГц, 0.05 — 0.07 для более высоких частот.

[Максимально возможная сила намагничивающего тока, A] = 0.25 * [Амплитудное значение напряжения, В] / [Частота, Гц] / [Индуктивность, Гн]

Коэффициент 0.25 возникает из следующих соображений. Напряжение действует на индуктивность половину периода. Если сигнал симметричный, то ток нарастает не с нуля, а от максимального отрицательного значения до максимального положительного.

Эта формула верна для симметричного меандра. Для других симметричных сигналов сила тока намагничивания будет меньше. Так что можно применять эту формулу с запасом, а можно использовать более точную формулу:

[Максимально возможная сила намагничивающего тока, A] = 0.25 * [Амплитудное значение напряжения, В] * [Обобщенный коэффициент заполнения] / [Частота, Гц] / [Индуктивность, Гн]

Вообще среднее напряжение на трансформаторе должно всегда быть равно 0. Если к обмотке приложено какое-то напряжение, то обмотка обязательно насытится. Но есть схемы, где симметричное напряжение на обмотке формируется источником (мостовая, полумостовая схемы источников питания, отчасти пушпульная), а есть такие, где источник формирует только половину напряжения, а вторая половина образуется самой катушкой при размагничивании. Приемы размагничивания будут описаны в отдельной статье. Подпишитесь на новости, чтобы быть в курсе. Здесь мы напомним только об одном. Сердечники без зазора очень плохо саморазмагничиваются. Они склонны к намагничиванию и сохранению такого состояния. Так что если размагничивание происходит принудительно, то нам подойдут замкнутые сердечники, если же размагничивание должно происходить самопроизвольно, то понадобится зазор.

Если в источнике питания не применяются специальные приемы, обеспечивающие симметричность напряжения на трансформаторе такие как полумост, мост с конденсатором последовательно трансформатору, то зазор тоже необходим. Например, он нередко нужен для пушпульной топологии и моста без конденсатора. В этих случаях может возникать небольшая асимметрия напряжения на трансформаторе за счет неодинаковых параметров силовых ключей. Чтобы ее компенсировать, нужно сделать небольшой зазор в сердечнике и подавать на трансформатор немного модифицированный меандр — с паузами между импульсами длительностью 3 — 5% от длительности импульсов, то есть с коэффициентом заполнения не более 95% — 97%. За это время сердечник будет успевать саморазмагнититься. Способ ограничения максимального коэффициента заполнения.

Надо понимать, что ток намагничивания никак не связан с общим током через первичную обмотку трансформатора. Если трансформатор нагружен, то индукция от тока в первичной обмотке компенсируется индукциями от токов вторичных обмоток и не намагничивает сердечник. Ток намагничивания — ток холостого хода трансформатора.

Стоит отметить, что в типовых схемах источников питания с якобы симметричным напряжением на трансформаторе на самом деле в самом начале работы и при переходных процессах, связанных с изменением входного напряжения или тока нагрузки, напряжение на трансформаторе асимметрично. Так что надо предусматривать некоторый запас по индукции. Если мы выберем рекомендованные выше значения индукции, то в моменты асимметрии сила тока намагничивания, а значит индукция, могут быть вдвое больше желаемых, что не превышает индукцию насыщения. Но на всякий случай, если позволяют габариты, лучше выбрать максимально приемлемую индукцию еще меньше. Это не только предотвратит насыщение, но и снизит потери на нагрев сердечника.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Здравствуйте. По поводу расчёта числа витков первички в импульсном тр. непонятно конкретно способ нахождения ‘Максимально приемлемая индукция, Тл’, или оно определяется как индуктивность, Гн через реактивное сопротивление? Читать ответ.

Усилитель / Генератор синусоиды на тиристоре (динисторе, тринисторе, с.
Схемы усилителя и генератора синусоидального сигнала на тиристоре в нестандартно.

Как не перепутать плюс и минус? Защита от переполюсовки. Схема.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.

Интегральный аналог конденсатора большой емкости. Умножитель, имитатор.
Умножитель емкости. Имитатор большого конденсатора на интегральной микросхеме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *