Логический элемент исключающее или

Автор: | 12.03.2024

И, ИЛИ, НЕ и их комбинации

digitlogic Домострой

В Булевой алгебре, на которой базируется вся цифровая техника, электронные элементы должны выполнять ряд определённых действий. Это так называемый логический базис. Вот три основных действия:

ИЛИ – логическое сложение (дизъюнкция) – OR;

И – логическое умножение (конъюнкция) – AND;

НЕ – логическое отрицание (инверсия) – NOT.

Примем за основу позитивную логику, где высокий уровень будет "1", а низкий уровень примем за "0". Чтобы можно было более наглядно рассмотреть выполнение логических операций, существуют таблицы истинности для каждой логической функции. Сразу нетрудно понять, что выполнение логических функций «и» и «или» подразумевают количество входных сигналов не менее двух, но их может быть и больше.

Логический элемент И.

На рисунке представлена таблица истинности элемента "И" с двумя входами. Хорошо видно, что логическая единица появляется на выходе элемента только при наличии единицы на первом входе и на втором. В трёх остальных случаях на выходе будут нули.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 0
0 1 0
1 1 1

На принципиальных схемах логический элемент "И" обозначают так.

and Домострой

На зарубежных схемах обозначение элемента "И" имеет другое начертание. Его кратко называют AND.

b and Домострой

Логический элемент ИЛИ.

Элемент "ИЛИ" с двумя входами работает несколько по-другому. Достаточно логической единицы на первом входе или на втором как на выходе будет логическая единица. Две единицы так же дадут единицу на выходе.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 1
0 1 1
1 1 1

На схемах элемент "ИЛИ" изображают так.

ili Домострой

На зарубежных схемах его изображают чуть по-другому и называют элементом OR.

b ili Домострой

Логический элемент НЕ.

Элемент, выполняющий функцию инверсии «НЕ» имеет один вход и один выход. Он меняет уровень сигнала на противоположный. Низкий потенциал на входе даёт высокий потенциал на выходе и наоборот.

Вход X Выход Y
0 1
1 0

Вот таким образом его показывают на схемах.

ne Домострой

В зарубежной документации элемент "НЕ" изображают следующим образом. Сокращённо называют его NOT.

b ne Домострой

Все эти элементы в интегральных микросхемах могут объединяться в различных сочетаниях. Это элементы: И–НЕ, ИЛИ–НЕ, и более сложные конфигурации. Пришло время поговорить и о них.

Логический элемент 2И-НЕ.

Рассмотрим несколько реальных логических элементов на примере серии транзисторно-транзисторной логики (ТТЛ) К155 с малой степенью интеграции. На рисунке когда-то очень популярная микросхема К155ЛА3, которая содержит четыре независимых элемента 2И – НЕ. Кстати, с помощью её можно собрать простейший маячок на микросхеме.

2i ne Домострой

Цифра всегда обозначает число входов логического элемента. В данном случае это двухвходовой элемент «И» выходной сигнал которого инвертируется. Инвертируется, это значит "0" превращается в "1", а "1" превращается в "0". Обратим внимание на кружочек на выходах – это символ инверсии. В той же серии существуют элементы 3И–НЕ, 4И–НЕ, что означает элементы «И» с различным числом входов (3, 4 и т.д.).

Как вы уже поняли, один элемент 2И-НЕ изображается вот так.

and ne Домострой

По сути это упрощённое изображение двух объёдинённых элементов: элемента 2И и элемента НЕ на выходе.

Зарубежное обозначение элемента И-НЕ (в данном случае 2И-НЕ). Называется NAND.

nand Домострой

Таблица истинности для элемента 2И-НЕ.

Вход X1 Вход X2 Выход Y
0 0 1
1 0 1
0 1 1
1 1 0

В таблице истинности элемента 2И – НЕ мы видим, что благодаря инвертору получается картина противоположная элементу «И». В отличие от трёх нулей и одной единицы мы имеем три единицы и ноль. Элемент «И – НЕ» часто называют элементом Шеффера.

Логический элемент 2ИЛИ-НЕ.

Логический элемент 2ИЛИ – НЕ представлен в серии К155 микросхемой 155ЛЕ1. Она содержит в одном корпусе четыре независимых элемента. Таблица истинности так же отличается от схемы "ИЛИ" применением инвертирования выходного сигнала.

2ili ne Домострой

Таблица истинности для логического элемента 2ИЛИ-НЕ.

Вход X1 Вход X2 Выход Y
0 0 1
1 0 0
0 1 0
1 1 0

Изображение на схеме.

ili ne Домострой

На зарубежный лад изображается так. Называют как NOR.

nor Домострой

Мы имеем только один высокий потенциал на выходе, обусловленный подачей на оба входа одновременно низкого потенциала. Здесь, как и на любых других принципиальных схемах, кружочек на выходе подразумевает инвертирование сигнала. Так как схемы И – НЕ и ИЛИ – НЕ встречаются очень часто, то для каждой функции имеется своё условное обозначение. Функция И – НЕ обозначается значком "&", а функция ИЛИ – НЕ значком "1".

Для отдельного инвертора таблица истинности уже приведена выше. Можно добавить, что количество инверторов в одном корпусе может достигать шести.

Логический элемент "исключающее ИЛИ".

К числу базовых логических элементов принято относить элемент реализующий функцию «исключающее ИЛИ». Иначе эта функция называется «неравнозначность».

Высокий потенциал на выходе возникает только в том случае, если входные сигналы не равны. То есть на одном из входов должна быть единица, а на другом ноль. Если на выходе логического элемента имеется инвертор, то функция выполняется противоположная – «равнозначность». Высокий потенциал на выходе будет появляться при одинаковых сигналах на обоих входах.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 1
0 1 1
1 1 0

Эти логические элементы находят своё применение в сумматорах. «Исключающее ИЛИ» изображается на схемах знаком равенства перед единицей "=1".

iskl ili Домострой

На зарубежный манер "исключающее ИЛИ" называют XOR и на схемах рисуют вот так.

Домострой

Кроме вышеперечисленных логических элементов, которые выполняют базовые логические функции очень часто, используются элементы, объединённые в различных сочетаниях. Вот, например, К555ЛР4. Она называется очень серьёзно 2-4И-2ИЛИ-НЕ.

lr Домострой

Её таблица истинности не приводится, так как микросхема не является базовым логическим элементом. Такие микросхемы выполняют специальные функции и бывают намного сложнее, чем приведённый пример. Так же в логический базис входят и простые элементы "И" и "ИЛИ". Но они используются гораздо реже. Может возникнуть вопрос, почему эта логика называется транзисторно-транзисторной.

Если посмотреть в справочной литературе схему, допустим, элемента 2И – НЕ из микросхемы К155ЛА3, то там можно увидеть несколько транзисторов и резисторов. На самом деле ни резисторов, ни диодов в этих микросхемах нет. На кристалл кремния через трафарет напыляются только транзисторы, а функции резисторов и диодов выполняют эмиттерные переходы транзисторов. Кроме того в ТТЛ логике широко используются многоэмиттерные транзисторы. Например, на входе элемента 4И стоит четырёхэмиттерный транзистор.

Логические элементы Исключающее ИЛИ применяются на практике не часто. Под функцией "Исключающее ИЛИ" или "Сложение по модулю 2" понимается следующее: единица на выходе появляется тогда, когда только на одном входе присутствует единица. Если единиц на входах две или если на всех входах нули, то на выходе будет нуль.
Надпись на обозначении элемента Исключающее ИЛИ "=1" как раз и обозначает .

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

beginner28 1 Домострой

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

beginner28 2 Домострой

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

beginner28 3 Домострой

Надо чего-нибудь говорить по поводу его работы?

Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».

Элемент «И-НЕ» (NAND)

beginner28 4 Домострой

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» — единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

beginner28 5 Домострой

Элемент «ИЛИ-НЕ» (NOR)

beginner28 6 Домострой

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)

beginner28 7 Домострой

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

beginner28 8 Домострой

Ее запоминать не обязательно.

Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Далее мы позанудствуем о том, как синтезировать цифровую схему, имея ее таблицу истинности. Это совсем несложно, а знать надо, ибо пригодится (еще как пригодится) нам в дальнейшем.

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

Читайте также  Набор для ремонта ниппелей

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *