Магнитное поле история открытия

Автор: | 12.03.2024

Магнитные явления были известны ещё в древнем мире: компас был изобретён более 4000 лет назад, и к XII веку он стал известен в Европе. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.

Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Х.Эрстеда (1777-1851). В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку (то есть подвижный магнит).

Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».

Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита. У многих возникал вопрос: а существует ли обратное действие, то есть постоянного магнита на проводник с током? Для поиска ответа проделаем опыт.

10210a Домострой

Положим на стол полосовой магнит, а над ним подвесим прямой жёсткий проводник на гибких проводах, подводящих ток, но дающих вместе с тем возможность проводнику поворачиваться (рис «а»). Как только мы подключим источник тока, проводник развернётся перпендикулярно к магниту (рис «б»). Другой вариант этого же опыта. Гибкий провод подвешен рядом с вертикально закреплённым магнитом (рис «в»). Когда по проводу идёт ток, то на каждый участок провода действует сила, разворачивающая его перпендикулярно к магниту (рис «г»). Поэтому провод и обвивается вокруг магнита, указывая на «круговой» характер магнитного поля.

Читайте также  Минпромторг департамент радиоэлектронной промышленности

Французский физик Ф.Араго (1786-1853) провёл серию своих опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только был включён ток, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Так был изобретён электромагнит – устройство, создающее сильное магнитное поле.

Открытие Ф.Араго заинтересовало его соотечественника А.Ампера (1775-1836), и он провёл опыты с параллельными проводниками с токами и обнаружил их взаимодействие (см. рисунок). Ампер показал, что если в проводниках идут токи одинаковых направлений, то такие проводники притягиваются друг к другу (левая часть рисунка). В случае же токов противоположных направлений, их проводники отталкиваются (правая часть рисунка). Как же объяснить такие результаты?

10210b Домострой

Во-первых, нужно было догадаться, что в пространстве, которое окружает постоянные токи и постоянные магниты, возникают силовые поля, называемые магнитными. Для их графического представления изображают силовые линии – это такие линии, в каждой точке которых магнитная стрелка, помещённая в поле, располагается по касательной к этой линии. Эти линии изображают более «густыми» или более «редкими» в зависимости от значения силы, действующей со стороны магнитного поля.

Во-вторых, нужно было проделать опыты и понять, что силовые линии прямого проводника с током представляют собой концентрические (расходящиеся от общего центра) окружности. Силовые линии можно «увидеть», если проводники пропустить сквозь стекло, на которое насыпать мелкие железные опилки. Более того, нужно было догадаться «приписать» силовым линиям определённое направление в зависимости от направления тока в проводнике. То есть ввести в физику «правило буравчика» или, что то же самое, «правило правой руки», см. рисунок ниже.

В-третьих, нужно было проделать опыты и ввести в физику «правило левой руки», чтобы определять направление силы, действующей на проводник с током, помещённый в магнитное поле, расположение и направление силовых линий которого известно. И лишь после этого, дважды воспользовавшись правилом правой руки и четырежды правилом левой руки, можно было объяснить опыт Ампера.

10210c Домострой

Силовые линии полей параллельных проводников с током представляют собой концентрические окружности «расходящиеся» вокруг каждого проводника, в том числе туда, где находится второй проводник. Поэтому на него действует магнитное поле, созданное первым проводником, и наоборот: магнитное поле, созданное вторым проводником, достигает первого и действует на него. Направление силовых линий определяется про правилу правой руки, а направление воздействия на проводник – по правилу левой руки.

Остальные, ранее рассмотренные опыты, объясняются аналогично: вокруг магнитов или проводников с током существует магнитное поле, по расположению силовых линий которого можно судить о направлении и величине магнитного поля, а также о том, как оно действует на проводники.

(C) 2011. «Физика.ru» при участии Краюхиной Т.Е. (Нижегородская обл., г. Сергач)

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

image027 Домострой

Один из первых рисунков магнитного поля (Рене Декарт, 1644). Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта «De Magnete», заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон, (1781—1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей). [15]

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа, который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением. [15]

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем, который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля. Кроме того, в этой работе, Ампер ввел термин «электродинамика» для описания взаимосвязи между электричеством и магнетизмом. В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея. Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем. В 1850 году лорд Кельвин, тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B. Первое было применимо к модели Пуассона, а второе — к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом. Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла, которые объяснили и объединили электричество и магнетизм в классической физике. Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной «On Physical Lines of Force». Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года «Динамическая теория электромагнитного поля» и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году. Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета — мысленный эксперимент, который в конечном итоге помог Эйнштейну в разработке специальной теории относительности. Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Не нашли то, что искали? Воспользуйтесь поиском:

1 Домострой

Физики сгенерировали поле, рекордное для управляющего магнита ускорителя.

Учёные из Национальной ускорительной лаборатории имени Ферми (США) поставили рекорд по напряжённости магнитного поля, управляющего движением частиц в ускорителе. Достижение должно помочь построить коллайдер, превосходящий БАК, и, быть может, вырваться на просторы новой физики.

Напомним, что в подобных устройствах частицы делают много оборотов в кольце ускорителя, с каждым проходом приобретая всё большую скорость. Но частица, предоставленная сама себе, будет лететь прямолинейно, пока не врежется в стену туннеля. Чтобы заставить её повернуть, нужна действующая на неё сила. И эта сила действует со стороны магнитного поля управляющих магнитов.

Физики стремятся разогнать частицы как можно сильнее, ведь при столкновениях частиц с большой энергией могут возникнуть явления, которые раньше не наблюдались. Например, знаменитое открытие бозона Хиггса стало возможным только потому, что Большой адронный коллайдер сообщает протонам рекордную энергию.

Но чем быстрее летят частицы, тем мощнее должно быть управляющее поле, чтобы они его "слушались". Магниты, работающие на БАК, не подойдут для ещё более масштабного ускорителя, который физики надеются когда-нибудь построить. Поэтому учёные занимаются разработкой более сильных магнитов.

При слове "магнит" большинство из нас вспомнит о постоянных магнитах вроде тех, которые мы привозим из путешествий, чтобы прикрепить к холодильнику. Вокруг таких объектов постоянно присутствует магнитное поле, поэтому эти магниты и называются постоянными. Но все подобные тела создают слишком слабые поля, чтобы использовать их на ускорителях.

Поэтому на коллайдерах применяются электромагниты. По сути это просто катушки провода. Когда по проводнику течёт ток, он создаёт магнитное поле.

Но в обычной проволоке лишь часть энергии тока идёт на генерацию поля. Вся остальная мощность превращается в теплоту из-за электрического сопротивления вещества. Поэтому нельзя генерировать всё более сильное поле, просто повышая силу тока. Провод расплавится, прежде чем напряжённость поля достигнет величины, которая нужна на современных ускорителях.

Физики выходят из положения, используя сверхпроводящую проволоку. Электрическое сопротивление сверхпроводника строго равно нулю, поэтому при протекании тока не выделяется тепло. Тем самым вся энергия тока переходит в энергию магнитного поля. Это позволяет создать очень сильные поля.

Однако сверхпроводимость – капризное состояние. Практически всегда оно достигается лишь при очень низкой температуре (а когда этого не требуется, возникают другие почти невыполнимые условия). Например, чистое олово становится сверхпроводником примерно при -269,4 °C, чистый титан – при -272,8 °C. Создавать и поддерживать такие температуры очень трудно.

К тому же у каждого сверхпроводника есть максимальное значение магнитного поля, которое можно создать с его помощью. При превышении этого предела само поле разрушает сверхпроводящее состояние. Нужно учитывать и другие характеристики материала, например, его прочность и гибкость.

Проволока в управляющих магнитах БАК изготовлена из соединения ниобия и титана. Но поле, достигнутое на этом ускорителе, практически является пределом для этого материала. Управляющие магниты более мощных коллайдеров нужно делать из чего-то другого.

Физики из лаборатории имени Ферми применили соединение ниобия и олова (кратко обозначаемое попросту "ниобий-олово"). Теоретически с его помощью можно получить магнитную индукцию до 15 тесла (недостижимая величина для оборудования БАК).

Изготовив из этого вещества прототип управляющего магнита, физики получили магнитное поле в 14,1 тесла. Предыдущий рекорд составлял 13,8 тесла и был поставлен в Национальной лаборатории имени Лоуренса в Беркли (США) 11 лет назад.

Для сравнения: сувенирный магнит на холодильнике создаёт поле порядка сотой доли тесла, а магниты в аппарате для МРТ – примерно трёх тесла. Человечество умеет создавать поля и в несколько тысяч тесла, но лишь на чрезвычайно короткое время.

"Мы работаем над преодолением барьера в 14 Тесла уже несколько лет, поэтому достижение этой отметки является важным шагом", – отмечает руководитель проекта Александр Злобин (Alexander Zlobin).

К слову, ниобий-олово переходит в сверхпроводящее состояние при -268,65 °C, что чуть выше температуры кипения жидкого гелия при нормальном давлении. Поэтому последний можно использовать как хладагент, точно так же, как это делается с действующими магнитами БАК. Это дорогая, но уже отработанная технология.

Однако ниобий-олово имеет существенный недостаток по сравнению с ниобием-титаном. Это хрупкое вещество. Поэтому, перефразируя известного киногероя, нельзя просто взять и сделать из него управляющие магниты так же, как они делались для БАК. Материал разрушится под действием механического напряжения, возникающего при работе коллайдера.

"При проектировании магнита нужно учитывать так много переменных: параметры поля, сверхпроводящей проволоки и кабеля, механическую структуру и её характеристики при сборке и эксплуатации, технологию [функционирования] магнита и [способы] защиты магнита во время работы, – поясняет Злобин. – Все эти проблемы ещё важнее для магнитов с рекордными параметрами".

Разработчики создали новое техническое решение. Из ниобий-оловянной проволоки были скручены кабели по нескольку десятков жил, причём вид скрутки был специально подобран. Кабели наматывались на катушку. Катушки в течение нескольких недель подвергались термообработке с пиковой температурой около 650 °C (именно такое "прогревание" изменило структуру материала так, чтобы при охлаждении он превращался в сверхпроводник). Затем обожжённые катушки были снабжены железным ярмом (деталь электромагнита) с алюминиевыми зажимами. Вся конструкция была заключена в кожух из нержавеющей стали.

В таком виде, по мысли разработчиков, магнит уже можно ставить на коллайдер. Но физики не намерены останавливаться на достигнутом. Они собираются довести магнитную индукцию до теоретического предела в 15 тесла, после чего сменить материал и добиться 17 и даже 20 тесла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *