Линейная скорость вращения тела

Автор: | 12.03.2024

«Физика — 10 класс»

Угловая скорость.

Каждая точка тела, вращающегося вокруг неподвижной оси, проходящей через точку О, движется по окружности, и различные точки проходят за время Δt разные пути. Так, АА1 > ВВ1 (рис. 1.62), поэтому модуль скорости точки А больше, чем модуль скорости точки В. Но радиус-векторы, определяющие положение точек А и В, поворачиваются за время Δt на один и тот же угол Δφ.

Угол φ — угол между осью ОХ и радиус-вектором 2.4 Домостройопределяющим положение точки А (см. рис. 1.62).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени радиус-векторы поворачиваются на одинаковые углы.

Чем больше угол поворота радиус-вектора, определяющего положение какой-то точки твёрдого тела, за определённый промежуток времени, тем быстрее вращается тело и тем больше его угловая скорость.

Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела υφ к промежутку времени υt, за который этот поворот произошёл.

Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

16.5 Домострой

Угловая скорость в СИ выражается в радианах в секунду (рад/с). Например, угловая скорость вращения Земли вокруг оси 0,0000727 рад/с, а точильного диска — около 140 рад/с.

Угловую скорость можно связать с частотой вращения.

Частота вращения — число полных оборотов за единицу времени (в СИ за 1 с).

Если тело совершает ν (греческая буква «ню») оборотов за 1 с, то время одного оборота равно 1/ν секунд.

Время, за которое тело совершает один полный оборот, называют периодом вращения и обозначают буквой Т.

Таким образом, связь между частотой и периодом вращения можно представить в виде

16.6 Домострой

Полному обороту тела соответствует угол Δφ = 2π. Поэтому согласно формуле (1.26)

16.7 Домострой

Если при равномерном вращении угловая скорость известна и в начальный момент времени t0 = 0 угол φ0 = 0, то угол поворота радиус-вектора за время t согласно уравнению (1.26)

Если φ0 ≠ 0, то φ — φ0 = ωt, или φ = φ0 ± ωt.

Радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности, 1 рад = 57°17’48". В радианной мере угол равен отношению длины дуги окружности к её радиусу: φ = l/R.

Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твёрдого тела, и осью ОХ увеличивается (рис. 1.63, а), и отрицательные, когда он уменьшается (рис. 1.63, б).

Тем самым мы можем найти положение точек вращающегося тела в любой момент времени.

Связь между линейной и угловой скоростями.

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть её отличие от угловой скорости.

Мы уже отмечали, что при вращении абсолютно твёрдого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.

16.8 Домострой

Установим связь между линейной скоростью любой точки вращающегося тела и его угловой скоростью. Точка, лежащая на окружности радиусом R, за один оборот пройдёт путь 2πR. Поскольку время одного оборота тела есть период Т, то модуль линейной скорости точки можно найти так:

16.9 Домострой

Так как ω = 2πν, то

16.10 Домострой

Из этой формулы видно, что, чем дальше расположена точка тела от оси вращения, тем больше её линейная скорость. Для точек земного экватора υ = 463 м/с, а для точек на широте Санкт-Петербурга υ = 233 м/с. На полюсах Земли υ = 0.

Модуль центростремительного ускорения точки тела, движущейся равномерно по окружности, можно выразить через угловую скорость тела и радиус окружности:

16.11 Домострой

Запишем все возможные расчётные формулы для центростремительного ускорения:

16.12 Домострой

Мы рассмотрели два простейших движения абсолютно твёрдого тела — поступательное и вращательное. Однако любое сложное движение абсолютно твёрдого тела можно представить как сумму двух независимых движений: поступательного и вращательного.

На основании закона независимости движений можно описать сложное движение абсолютно твёрдого тела.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Кинематика — Физика, учебник для 10 класса — Класс!ная физика

Движение твердого тела

Твердое тело может участвовать в двух видах движения: поступательном и вращении. При поступательном движении тела все его точки совершают за одинаковые промежутки времени одинаковые перемещения, в результате такого движения скорости и ускорения всех точек в каждый момент времени одинаковы. Значит, достаточно определить закон движения одной точки тела, для характеристики поступательного движения всего тела.

Если тело вращается, то все точки твердого тела совершают движения по окружностям с центрами, принадлежащими прямой. Эту прямую называют осью вращения.

Любое движение твердого тела можно представить как совокупность поступательного движения и вращения. Рассмотрим плоское движение. При этом элементарное перемещение некоторой выделенной точки тела ($doverline$) разложим на два перемещения: $d<overline>_p$ — поступательное перемещение и $d<overline>_v$ — вращательное перемещение, при этом:

где $d<overline>_p$ для всех точек тела одинаково. $d<overline>_v-$ перемещение, которое осуществляется при повороте тела на один и тот же угол $dvarphi $ но относительно разных осей.

Скорость сложного движения твердого тела

Разделим обе части выражения (1) на отрезок времени, равный $dt$, получим:

где $<overline>_0$ — скорость поступательного движения точек твердого тела (равна для всех точек); $overline

$ точки с радиус-вектором $overline$, которая возникает в результате вращения тела (линейная скорость вращения точки), равна:

в выражении (3) имеется в виду векторное произведение. Величина линейной скорости вращения находится как:

где $alpha $ — угол между направлением вектора угловой скорости и радиус-вектором точки (рис.1).

pic195 Домострой

Скорость этой точки при сложном движении представлена формулой:

В теле могут иметься точки, которые участвуют в поступательном движении и вращении и при этом остаются неподвижными. При известных $<overline>_0 $и $overline<omega >$ можно найти такой радиус-вектор ($overline

$), что $overline=0.$

Линейная скорость движения точки по окружности

Перемещение материальной точки по окружности иногда называют вращением точки. Скорость движения материальной точки по окружности называют линейной скоростью для того, чтобы подчеркнуть ее отличие от угловой скорости. При равномерном движении точки по окружности, можно записать:

где $R$ — радиус окружности; $s=Delta varphi R$ — путь, который проходит точка за время $Delta t$, равный длине дуги окружности. Выражение:

справедливо для равномерного и неравномерного движения точки по окружности.

При равномерном движении по окружности движение можно характеризовать при помощи периода обращения точки T, тогда:

Примеры задач на линейную скорость вращения

Задание. Какова линейная скорость точек лежащих на поверхности Земли на широте Москвы ($alpha =56<>^circ $)?

Решение. Сделаем риснок.

pic196 Домострой

Рассмотрим движение точки A, которая движется по окружности радиуса $r$ на рис.2. Радиус этой окружности связан с радиусом Земли ($R$) и широтой местности, которая обозначена углом $alpha $:

Движение точки A можно считать равномерным, поэтому ее линейную скорость найдем как:

Радиус Земли примем равным $6,3cdot <10>^6м.$ Период обращения Земли вокруг своей оси T= 86164 с. Вычислим линейную скорость вращения точек на обозначенной широте:

Ответ. $v=257 frac<м><с>$

Задание. Винт вертолета имеет частоту вращения равную $n$. Скорость поступательного движения вертолета равна $u$. Какова линейная скорость движения одного из концов винта, если его радиус равен $R$?

Решение. Скорость движения точки винта при сложном движении, равна:

где $<overline

>_0$ — скорость поступательного движения вертолета; $overline=left[overline<omega >overline
ight];; left|overline

Читайте также  Марганцовка пропорции с водой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *