Левитрон на датчике холла

Автор: | 12.03.2024

slogan Домострой

header grey left Домострой

header grey right Домострой

Левитрон

Довольно давно мне на глаза попалось видео, в котором демонстрировалось замечательное устройство — левитрон. Вариантов уйма. К сожалению, для изготовления левитрона на постоянных магнитах мне не удалось найти подходящих магнитов и, после нескольких неудачных попыток, данный проект был заброшен.

Недавно я вспомнил про левитрон и решил чуть больше про него почитать/посмотреть. Нашёл инструкцию изготовления левитрона на электромагните. Вроде выглядела она не сильно сложно, и я решился повторить её.

С большим трудом нашёл подходящий датчик Холла у нас в городе. Сначала опробовал датчики из DVD/CD — они совсем мелкие и жутко хрупкие. Так ничего и не получилось с ними. Потом добрые люди из "Банды технарей" в Г+ подсказали про наличие подобных датчиков в ноутбуках. В своём старом нерабочем ноуте найти датчик не удалось (видимо, плохо искал). Зато удалось парочку таких датчиков найти у ремонтников из местной "Формозы". Правда, с ними тоже ничего не получилось в силу всё тех же причин (мелкие, хрупкие, к тому же один оказался нерабочим). В конце концов в радиомагазине на другом конце города нашёл датчики Холла AH44E, с которыми всё получилось как надо.

Первая версия была собрана на готовой плате с отверстиями и выглядела ужасно (зелёная платка на фото):

0 f5cdf c39827eb M Домострой

К счастью, всё получилось и устройство заработало:

Но внешний вид меня не очень устроил, да и полученный опыт ЛУТа не давал покоя. Поэтому решено было сделать печатную плату под левитрон. Сказано — сделано. Спустя всего около 4-х часов работы удалось сделать вторую версию левитрона, которую уже не стыдно в школе детям показать. Вот так выглядят первая и вторая версия основы левитрона:

0 f5ce0 b6cea1d2 M Домострой

0 f5ce1 af0d20f7 M Домострой

Вот так выглядит работающая вторая версия левитрона:

0 f5ce3 2f36d26c M Домострой

А когда мне удалось раздобыть лёгкую батарейку на 3 вольта, получилась вообще красота:

На всякий случай небольшое пояснение. Работает левитрон очень просто: берётся небольшой ниодимовый магнит и подносится к катушке левитрона снизу так, чтобы он притягивался к катушке (если отталкивается — переверните магнит). При этом, когда магнит притягивается очень близко к катушке, должен погаснуть светодиод, тем самым показав, что сработал датчик Холла и катушка отключилась. Если при приближении магнита вплотную к катушке ничего не происходит, то надо поменять полярность подключения катушки и перевернуть магнит. В результате должно получиться такое: 1) катушка притягивает магнит, 2) магнит поднимается, 3) при чрезмерном приближении к катушке срабатывает датчик и отключает её, 4) магнит начинает падать, датчик перестаёт "чувствовать" магнит и снова включается катушка. Быстрое повторение 1-4 пунктов и позволяет магниту висеть под катушкой.

Только надо подвешивать магнит аккуратно. Если он будет дёргаться, то постепенно раскачается до такой степени, что просто упадёт!

Особенно прикольно смотрится горящий светодиод (см. последнее видео). Надо взять лёгкую батарейку на 3V, примагнитеть её к нашему магниту, плилепить туда же светодиод так, чтобы он горел, и всё это подвесить под катушкой.

Рисунок платы можно взять здесь. R1 = 1кОм, R2 = 100-300 Ом (в оригинальной инструкции 280 Ом, у меня и с 100 Ом работает). Транзистор: IRF740. Диод: N4007. Катушка: Ø0.355, примерно 150-170 грамм (купил в магазине и даже перематывать не стал, т.к. она не сильно отличается от параметров из оригинальной инструкции). Датчик Холла: AH44E или аналогичный. Светодиод любой.

Левитрон позволяет осуществлять магнитную подвеску объектов с небольшим весом путем управления магнитным полем, создаваемым катушкой L1. Обратная связь происходит с помощью датчика Холла, выпаянного со старого 3,5" дисковода (от дискет). Под воздействием внешнего магнитного поля на клеммах H+ и H- возникает разность потенциалов в зависимости от направления поля и его положения.

Схема электрическая левитрона с датчиком Холла

s58463551 Домострой

Датчики Холла такого типа довольно низкого качества, но их вполне достаточно для этого применения. Некоторые используют дорогие ратиометрические датчики, но они дороги и довольно труднодоступны. Датчик, который использован тут, является линейным устройством, но его легко спутать с цифровыми, что также часто стоят на дисководах. Чтобы избежать ошибки, проверьте его с помощью обычного мультиметра или осциллографа.

levitron s khallotronom 4 Домострой

Катушка левитрона представляет собой спиральную проволоку диаметром 0,4 мм на сердечнике — винт с поперечным сечением около 1 см кв. и длиной около 5 см. Под ним установлен датчик. Хорошей идеей является защита его пластиком, который не был бы поврежден неодимовым магнитом, если его случайно ударить об сердечник катушки. Объект, подвешенный под катушкой, должен быть снабжен неодимовым магнитом. Например цилиндрический магнит с поперечным сечением 15 мм и длиной 20 мм.

Для правильной работы устройства полярность катушки и магнита должны быть выбраны соответствующим образом. Это легко сделать с помощью простого компаса. Магнит должен быть направлен к Земле полюсом «S». Приведенная в действие катушка также должна смотреть на Землю с южным полюсом. Таким образом, катушка будет тянуть магнит, когда он находится в пределах своего магнитного поля.

Схема также содержит элементы, защищающие катушку и полевой транзистор от сгорания, когда объект прилипает к сердечнику или выпадает из поля. В этом случае схема управления катушкой закрыта, и ток там не течет. Итого:

  1. катушка точно и симметрично намотана,
  2. датчик расположен точно в центре сердечника,
  3. почти весь вес шара находится намного ниже магнита,
  4. катушка ориентирована точно вертикально.

Графики сигналов в контрольных точках

levitron s khallotronom 3 Домострой

  • Uh+: напряжение на положительном выходе галлотрона,
  • Ua: напряжение на выходе повторителя A,
  • Ub: напряжение на выходе инвертирующего усилителя B,
  • Uc: напряжение на выходе триггера Шмидта C,
  • Ud: напряжение, управляемое полевым транзистором.

Что касается потребления тока, измерения цифровым мультиметром показали значение ниже 100 мА (рост при увеличении веса). Чтобы увеличить грузоподъемность, катушки также должны быть увеличены, как и поперечное сечение сердечника и / или его магнитная проницаемость. Можно попытаться использовать ферритовое, но такие сердечники имеют значение частот выше 100 кГц.

levitron s khallotronom 2 Домострой

Транзистор имеет постоянный ток 7 А и сопротивление канала 30 мОм. В результате он вообще не нагревается. Однако вы можете поднять напряжение, управляющее затвором транзистора, чтобы уменьшить это сопротивление, что, в свою очередь, уменьшит потери тепла в транзисторе.

На самом деле, расстояние от левитирующего объекта зависит от силы электромагнита. Это означает, что чем больше произведение тока катушки и количества витков катушек, тем больше напряженность магнитного поля, создаваемого катушкой. Но это еще не все. Кроме того, на расстояние также влияет проницаемость и площадь поперечного сечения сердечника, чувствительность и динамический диапазон датчика Холла, размер неодимового магнит (интенсивность магнитного поля).

Автор: crocodil, crocodil@mail.ua
Опубликовано 15.01.2014
Создано при помощи КотоРед.

01 pre Домострой

Левитация – одно из воплощений человеческой мечты о полете.

02 pre Домострой

Созерцание парящего кристалла – хороший способ релаксации и пополнения пси-энергии.

Кристаллом мною назван левитирующий неодимовый магнит – он обклеен природными кристаллами пирита и халькопирита и имеет сходство с цельным кристаллом.

Согласно теореме Ирншоу, являющейся следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Однако существует возможность сделать левитацию реальной, например, используя электронную стабилизацию – электромагниты, управляемые посредством электроники.

Поскольку действительную природу магнетизма и гравитации никто пока не объяснил, то работу левитатора можно описать так:

Суммарная картина магнитных силовых линий неодимовых магнитов, расположенных в основании левитатора представляет собой поле магнитного кольца с прямоугольным поперечным сечением. Видно, что в точках 1 и 2 магнитное поле меняет направление. Если поместить в точку 1 небольшой магнит, то мы почувствуем, что его перемещению по вертикали препятствует магнитное поле кольца и гравитация (вначале он может еще перевернутся). По вертикали он как бы в ловушке. В горизонтальной плоскости наш магнит норовит выскользнуть и притянуться к кольцу. Тут мы ему устраиваем ловушку в горизонтальной плоскости – отслеживаем его положение с помощью датчиков, и далее с помощью 3-х пар электромагнитов A,B,C расположенных в основании левитатора возвращаем его каждый раз в точку 1. Энергия электромагнитов расходуется только на компенсацию небольших смещений левитирующего магнита в горизонтальной плоскости. По сути, энергия только перекачивается из одной пары катушек в другую. Потребление энергии при этом намного меньше, чем в системах, в которых электромагнит сверху – в них он должен еще компенсировать действие на левитирующий предмет силы тяжести.

03 pre Домострой

Картина силовых линий магнитного поля кольца, электромагнита и магнита.

При конструировании левитатора я ознакомился с патентом US20070170798: https://www.freepatentsonline.com/20070170798.pdf Вот некоторые рисунки с этого патента:

04 pre Домострой

Контроль левитирующего магнита осуществляется с помощью оптических датчиков положения и 3-х пар электромагнитов. Смещение магнита влево компенсируется за счет сочетания действия южного полюса электромагнита A1 и северного полюса электромагнита A2. Конденсатор 23 помогает противостоять любым быстрым смещениям магнита.

Также была использована идея Nicanor Apostol: https://www.youtube.com/user/nick500453/videos для контроля положения левитирующего магнита с помощью датчиков магнитного поля – датчиков Холла.

05 pre Домострой

Операционные усилители включены в дифференциальном режиме. Каждый датчик Холла выдает сигнал на два ОУ, на прямой вход одного и инвертирующий другого.

06 pre Домострой

После некоторых раздумий и экспериментов получилась такая схема:

07 pre Домострой

При появлении кристалла в зоне левитации, геркон замыкается и на схему подается питание, она начинает генерировать, возникает самовозбуждение системы – кристалл парит.

Устойчивая левитации кристалла достигается небольшим подгибанием датчиков Холла в вертикальной плоскости. При этом можно ориентироваться на потребление тока левитатором. При точной настройке оно будет менее 100mA, и при попытке сместить левитирующий кристалл по горизонтали в какую-либо сторону будут ощущаться одинаковые усилия. Также при точной настройке практически пропадает шум, связанный с работой электромагнитов. На первом ОУ и TL431 собран супервизор питания. Если при левитации кристалла пропадает синяя подсветка, значит, напряжение батареи менее 3.6V и её следует зарядить.

Кстати, в моем случае наблюдается интересное явление раскручивания кристалла против часовой стрелки. Если его слегка закрутить, то дальше он раскручивается сам – примерно до 50-140 оборотов в минуту, в зависимости от напряжения питания и высоты левитации. Связано это с неоднородностью намагниченности кристалла и с тем, что включенные по схеме звезда электромагниты левитатора в какой-то момент начинают работать подобно трехфазному двигателю.

Катушки электромагнитов использованы с двигателя ведущего вала видеомагнитофона (типа как на фото ниже). Индуктивность каждой 330mkH, сопротивление 2.2 Ohm. Направление намотки этих катушек видно на фото – это важно для правильной работы левитатора. В конструкции использовано шесть неодимовых магнитов 15*5*5мм, шесть 15*6*2мм и один диаметром 20мм, толщиной 5мм в кристалле. ОУ LMV324 можно заменить аналогичным по параметрам "rail to rail op amp". Вместо IRF7319 подойдёт IRF7389. В качестве ферромагнитного сердечника катушек электромагнитов использованы болты и гайки М4, они же и скрепляют всю конструкцию.

08 pre Домострой

Разводка платы левитатора сделана в одном слое с помощью трассировщика Topo-R: https://eda.eremex.ru/ . На второй стороне платы фольга оставлена, она соединена с "землей" в двух точках. С кромок отверстий под выводы катушек, датчиков, светодиода фольга удалена зенкованием сверлом, диаметр которого в 3. 4 раза больше диаметра отверстий. Стеклотекстолит толщиной 1мм.

09 pre Домострой

10 pre Домострой

Вид собранной платы с двух сторон. Магниты держатся за счет взаимного притяжения , дополнительно они приклеены к плате суперклеем. Между катушками электромагнитов и платой проложена полоска двухстороннего скотча.

11 pre Домострой

12 pre Домострой

Для полной картины отмечу, что возможны варианты магнитной левитации без всякой электроники: https://www.antigravity.net.au/ . Вот некоторые:

1. Если придать магниту в точке 1 быстрое вращение вокруг вертикальной оси (сделать из него волчок), то он там и будет оставаться. Сам по себе волчок стремится сразу перекувыркнуться и упасть. Раскрученный же волчок этого сделать не может – ему приходится противодействовать моменту инерции. Минус такого решения – ограниченное несколькими минутами время левитации.

13 pre Домострой

2. Известно, что диамагнетики выталкиваются магнитным полем. Если взять кусок пиролитического графита (диамагнетика) – наш магнитик с удовольствием будет над ним левитировать. Минус – небольшая высота левитации, как следствие отсутствия в природе сильных диамагнетиков. Или сильных магнитов в маленьком объеме.

14 pre Домострой

3. Вариант предыдущего случая – использовать "идеальный" диамагнетик, каковым есть по сути сверхпроводник. Например, высокотемпературный сверхпроводник с Пандоры – анобтаниум. Имеем приличную высоту парения сверхпроводника над магнитной подставкой. Минус решения – дороговизна. Нерафинированный анобтаниум стоит около двадцати миллионов долларов за килограмм, очищенный повышает стоимость вдвое – до сорока миллионов.

15 pre Домострой Этот серый камушек идет по 20 миллионов за кило.

Предвидя вопросы, отвечу на некоторые из них:

1. Парящий кристалл есть нельзя, он не вкусный и не съедобный.

2. Если ты думаешь, что как магнитный железняк может притягивать железо, ты так же можешь заставить его притянуть куски керамики, то ты заблуждаешься,… магнитный железняк может притягивать железо, но не взаимодействует с медью. Таково движение Дао (из китайского философского трактата Хуайнань-цзы).

3. Именно анобтаниум вызвал появление на Пандоре таких изумительных геологических достопримечательностей, как каменные арки и парящие горы.

16 pre Домострой

Разводку платы прилагаю. 🙂

. И некоторые идеи вдогонку — вариант Levi_2 (разводку платы прилагаю):

17 pre Домострой
Отличие – низ левитатора подсвечивается 2-мя светодиодами, которые вынесены ближе к краям платы. Должно смотреться эффектнее, ярче.
Подсветку внизу можно сделать другим цветом, при разряде батареи будет пропадать только нижняя подсветка.

В качестве левитирующего кристалла заманчиво применить флюорит — флюоресцирующий минерал. Cиний светодиод подсветки поменять на ультрафиолетовый ..

Читайте также  Нарисовать наличники 5 класс легко

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *