Направление вектора напряженности электростатического поля

Автор: | 12.03.2024

Напряженность электрического поля измеряют с помощью пробного заряда f478505b13b9070f6dbed50d36ec438c ДомостройЕсли величину пробного заряда уменьшить в n раз, то модуль напряженности измеряемого поля

2) увеличится в n раз

3) уменьшится в n раз

4) увеличится в e14fb2513dabefd4dca5fc8541b4004f Домостройраз

Сила, с которой электрическое поле действует на пробный электрический заряд пропорциональна величине этого заряда, поэтому величина напряженности электрического поля не зависит от величины пробного заряда 00e59e911daa4d1d2d6ced345ecfca87 Домострой

по этой формуле же увеличится в n раз

Читайте внимательнее. Сила, действующая на пробный заряд, пропорциональна его величине. Если бы напряженность зависела от величины заряда, то какой бы был прок в такой характеристике поля?

Для электрической напряженности также существует формула E=k*q/r^2. по ней напряженность и заряд прямопропорциональны. как быть?

Напряженность создает другой заряд, который не изменяется.

Ме­тал­ли­че­ско­му по­ло­му телу, се­че­ние ко­то­ро­го пред­став­ле­но на ри­сун­ке, со­об­щен от­ри­ца­тель­ный заряд. Ка­ко­во со­от­но­ше­ние между по­тен­ци­а­ла­ми точек 1, 2 и 3, если тело по­ме­ще­но в од­но­род­ное элек­тро­ста­ти­че­ское поле?

1) cee3baf223ea881d6a35ca6e293fc63b Домострой

2) 2104a47b23021f10f4134efcb7052692 Домострой

3) 8ed850bcc903ec77402c1acf4a598256 Домострой

4) b5fbf9d84b64a34b9f3c438ab7a5dbc3 Домострой

Ме­талл яв­ля­ет­ся про­вод­ни­ком. Про­вод­ник, по­ме­щен­ный в элек­тро­ста­ти­че­ское поле яв­ля­ет­ся эк­ви­по­тен­ци­аль­ным телом, то есть все его точки на­хо­дят­ся под оди­на­ко­вым по­тен­ци­а­лом. Дей­стви­тель­но, если пред­по­ло­жить об­рат­ное и до­пу­стить, что в про­вод­ни­ке есть точки с раз­ны­ми по­тен­ци­а­ла­ми, то между этими точ­ка­ми будет не­ну­ле­вая раз­ность по­тен­ци­а­лов, а зна­чит, эти точки про­вод­ни­ка будут на­хо­дить­ся под не­ну­ле­вым элек­три­че­ским на­пря­же­ни­ем, но тогда в про­вод­ни­ке дол­жен течь ток, что про­ти­во­ре­чит ис­ход­но­му пред­по­ло­же­нию о том, что все элек­тро­ста­тич­но. Таким об­ра­зом, при по­ме­ще­нии про­вод­ни­ка в элек­тро­ста­ти­че­ское поле за­ря­ды на его по­верх­но­сти все­гда пе­ре­рас­пре­де­ля­ют­ся таким об­ра­зом, чтобы по­тен­ци­ал всех точек был оди­на­ко­вым. Более того, если в про­вод­ни­ке име­ет­ся по­лость, то все точки по­ло­сти также имеют по­тен­ци­ал, сов­па­да­ю­щий по ве­ли­чи­не с по­тен­ци­а­лом про­вод­ни­ка. Это яв­ле­ние на­зы­ва­ет­ся экра­ни­ров­кой элек­тро­ста­ти­че­ско­го поля. Таким об­ра­зом, верно утвер­жде­ние 1.

1 незаряженный металлический шар, помещённый в электрическое поле
2 отрицательный пробный заряд, помещённый в электрическое поле
3 положительный пробный заряд, помещённый в электрическое поле
4 ответа нет, так как напряженность поля-скалярная величина

Сила действующая в поле на заряд 0,00002Кл, равна 4 H. Напряжённость поля в этой точке равна

1 . 200 000 Н/кл 2. 0,00008 B/м 3. 0,0008 H/кл 4. 5 умножить 10 над десяткой -6 далее кл/н

Силовая линия электрического поля-это

1. линия,вдоль которой в поле будет двигаться положительный заряд
2. линия, вдоль которой в поле будет двигаться отрицательный заряд
3. светящаяся линия в воздухе, которая видна при большой напряженности поля
4. линия, в каждой точке которой напряжённость поля направлена по касательной.

По теории близкодействия взаимодействия между заряженными телами, удаленными друг от друга, происходит с помощью электромагнитных полей, создаваемых этими телами в окружающем их пространстве. Если поле было создано неподвижными частицами, то его относят к электростатическому. Когда происходят изменения во времени, получает название стационарного. Электростатическое поле является стационарным. Оно считается частным случаем электромагнитного поля.

Характеристика электрического поля

Силовая характеристика электрического поля – вектор напряженности, который можно найти по формуле:

E → = F → q , где F → — сила, действующая со стороны поля на неподвижный (пробный) заряд q . Его значение должно быть настолько мало, чтобы отсутствовала возможность искажать поле, напряженность которого с его помощью и измеряют. По уравнению видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный пробный заряд.

У напряженности электростатического поля нет зависимости от времени. Когда она во всех точках поля одинакова, тогда поле называют однородным. В другом случае – неоднородным.

Силовые линии

Чтобы изобразить электростатические поля графически, необходимо задействовать понятие силовых линий.

Силовые линии – это линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Такие линии в электростатическом поле разомкнутые. Они начинаются на положительных зарядах и заканчивают на отрицательных. Реже уходят в бесконечность или возвращаются из нее. Силовые линии поля не могу пересекаться.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

E → = ∑ i = 1 n E → i .

Результирующий вектор напряженности сводится к нахождению векторной суммы напряженностей, составляющих его «отдельные» поля. При распределении непрерывного заряда, поиск суммарной напряженности поля производится по формуле:

Интегрирование E → = ∫ d E → проводится по области распределения зарядов. Если их распределение идет по линии ( τ = d q d l — линейная плотность распределения заряда), то интегрирование E → = ∫ d E → тоже. Когда распределение зарядов идет по поверхности и поверхностная плоскость обозначается как σ = d q d S , тогда интегрируют по поверхности.

Интегрирование по объему выполняется, если имеется объемное распределение заряда:

ρ = d q d V , где ρ — объемная плотность распределения заряда.

Что называется напряженностью электрического поля

Напряженность поля в диэлектрике равняется векторной сумме напряженностей полей, которые создают свободные E 0 → и связанные E p → заряды:

Зачастую бывают случаи, когда диэлектрик изотропный. Тогда запись напряженности поля имеет вид:

E → = E 0 → ε , где ε обозначает относительную диэлектрическую проницаемость среды в рассматриваемой точке поля.

Отсюда следует, что по выражению E → = E 0 → ε имеется однородный изотропный диэлектрик с напряженностью электрического поля в ε меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равняется:

E → = 1 4 π ε 0 ∑ i = 1 n q i ε r i 3 r i → .

В системе СГС напряженность поля точечного заряда в вакууме:

Дан равномерно распределенный заряд по четверти окружности радиуса R с линейной плотностью τ . Необходимо найти напряженность поля в точке А , являющейся центром окружности.

Решение

image033 Домострой

Произведем выделение на заряженной части окружности элементарного участка d l , который будет создавать элемент поля в точке А . Следует записать выражение для напряженности, то есть для d E → . Тогда формула примет вид:

d E → = d q R 3 R → R .

Проекция вектора d E → на ось О х составит:

d E x = d E cos φ = d q cos φ R 2 .

Произведем выражение d q через линейную плотность заряда τ :

d q = τ d l = τ · 2 πRdR .

Необходимо использовать d q = τ d l = τ · 2 πRdR для преобразования d E x = d E cos φ = d q cos φ R 2 :

d E x = 2 π R τ d R cos φ R 2 = 2 π τ d R cos φ R = τ cos φ d φ R ,

где 2 π d R = d φ .

Далее перейдем к нахождению полной проекции E x при помощи интегрирования d E x = 2 π R τ d R cos φ R 2 = 2 π τ d R cos φ R = τ cos φ d φ R ,

по d φ с изменением угла 0 ≤ φ ≤ 2 π .

E x = ∫ 0 2 π τ cos φ d φ R = τ R ∫ 0 2 π cos φ d φ = τ R sin φ 0 2 π = τ R .

Перейдем к проекции вектора напряженности на О у :

d E y = d E sin φ = τ R sin φ d φ .

Следует проинтегрировать с изменяющимся углом π 2 ≤ φ ≤ 0 :

E y ∫ π 2 0 τ R sin φ d φ = τ R ∫ π 2 0 sin φ d φ = — τ R cos φ π 2 0 = — τ R .

Произведем нахождение модуля вектора напряженности в точке А , применив теорему Пифагора:

E = E x 2 + E y 2 = τ R 2 + — τ R 2 = τ R 2 .

Ответ: E = τ R 2 .

Найти напряженность электростатического поля равномерно заряженной полусферы с радиусом R . Поверхностная плотность заряда равняется σ .

Решение

image073 Домострой

Следует выделить на поверхности заряженной сферы элементарный заряд d q , располагаемый на элементе площади d S . Запись, используя сферические координаты d S , равняется:

d S = R 2 sin θ d θ d φ ,

при 0 ≤ φ ≤ 2 π , 0 ≤ θ ≤ π 2 .

Элементарная напряженность поля точечного заряда в системе С И :

d E → = d q 4 π ε 0 R 3 R → R .

Необходимо спроецировать вектор напряженности на О х :

d E x = d q cos θ 4 π ε 0 R 2 .

Произведем выражение заряда через поверхностную плотность заряда:

Подставим d q = σ d S в d E x = d q cos θ 4 π ε 0 R 2 , используя d S = R 2 sin θ d θ d φ , проинтегрируем и запишем:

E x = σ R 2 4 π ε 0 R 2 ∫ 0 2 π d φ ∫ 0 π 2 cos θ sin θ d θ = σ 4 π ε 0 2 π · 1 2 = σ 4 ε 0 .

Отсюда следует, что E = E x .

Ответ: напряженность полусферы в центре равняется E = σ 4 ε 0 .

Читайте также  Кран трехходовой под манометр abra

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *