Максимальный заряд на обкладках конденсатора

Автор: | 12.03.2024

g′4 = image157 Домострой= image158 Домострой

Определяем периоды колебаний маятника на каждом участке пути:

Т1 = 2πimage159 Домострой= 2πimage160 Домострой≈ 2,3 с,

Т2 = 2π√ l/g = 2π√ 1,0 м / 9, 8 м/с 2 ≈ 2,3 с,

Т3 = 2π√ l/(g + а1) = 2π√ 1,0 м / (9,8 /с 2 + ¼ 9,8 м/с 2 ) ≈ 1,8 с,

Ответ: Период колебаний маятника на первом участке пути Т1 ≈ 2,3 с; на втором участке Т2 ≈ 2,0 с; на третьем участке Т3 ≈ 1,8 с; при горизонтальном движении Т4 ≈ 0,62 с.

image161 Домострой

Примеры решения задач

1 Колебательный контур индуктивностью 4000 мкГн и емкостью 400 пФ был подключен к источнику напряжением 400 В. Определите частоту и период свободных колебаний в контуре и амплитудное значение силы тока в контуре. Анализ условия. Задача чисто расчетная: все необходимые величины можно вычислить по известным формулам. Однако надо быть внимательным при подстановке величин в эти формулы: пикофарады и микрогенри надо выразить в фарадах и генри.

ω0 = l / √LC = l / √400 · 10 -6 · 400 · 10 -12 = 2,5 · 10 6 рад/с;

ν = ω0 / 2π = 2,5 · 10 6 / 6,28 ≈ 400 · 10 3 Гц = 400 кГц,

Т = 2π√LC = 6,28√400 · 10 -6 · 400 · 10 -12 ≈ 2,5 · 10-6 с = 2,5 мкс,

image162 Домострой image163 Домострой_____ ___________________________

Поэтому Im = Um √C / L = 400 В √ 400 · 10 -12 / 400 · 10 -6 = 10 -3 А

2 Максимальный заряд конденсатора колебательного контура Qm = 1 Кл, а циклическая частота ω0 = 1 рад/с. Чему равна амплитуда колебаний силы тока в контуре?

Анализ условия. Задача сводится к нахождению соотношения между амплитудой тока, амплитудой заряда и циклической частотой.

Обратите внимание на полученный результат, он вам в дальнейшем будет нужен.

Вычисление. Im = 1 Кл · 1 1/с = 1 А

Примеры решения задач

1 Максимальный заряд на обкладках конденсатора колебательного контура qm = 10 -6 Кл. Амплитудное значение силы тока в контуре Im = 10 -3 А. Определите период колебаний. Потерями при нагревании проводников можно пренебречь.

Решение. Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значению энергии магнитного поля катушки:

Следовательно, Т = 2π√LC = 2π · qm / Im ≈ 6,3 · 10 -3 с

2 Рамка площадью S = 3000 см 2 имеет N = 200 витков и вращается в однородном магнитном поле с индукцией B = 1,5 · 10 -2 Тл. Максимальная ЭДС в рамке Em = 1,5 В. Определите время одного оборота.

Решение: Амплитуда ЭДС индукции в одном витке равна BSω. Так как ЭДС, возникающие в отдельных витках рамки, складываются, то для амплитуды ЭДС в рамке, имеющей N витков, получим Em = BSω.Отсюда

Время одного такого оборота можно найти так:

Т = 2π / ω = 2πNBS / Em ≈ 3,8 · 10 -2 с

3 Катушка с индуктивным сопротивлением ХL = 500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100В. Определите амплитуду силы тока Im в цепи и индуктивность катушки L. Активным сопротивлением катушки можно пренебречь.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Электромагнитные колебания, возникающие в идеальном колебательном контуре (при отсутствии в нем активного сопротивления), описываются уравнениями, аналогичными уравнениям механических колебаний. В идеальном электромагнитном контуре заряд на обкладках конденсатора, разность потенциалов (напряжение) между его обкладками и сила тока в катушке индуктивности изменяются с течением времени по гармоническим законам.

Зависимость заряда на обкладках конденсатора от времени описывается уравнениями:

q ( t ) = q max sin ( ω t + φ 0 ) или q ( t ) = q max cos ( ω t + φ 0 ) ,

где q max — максимальное значение заряда ( амплитуда заряда ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора максимален), то для описания колебаний заряда выбирают формулу

q ( t ) = q max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора равен нулю), то для описания колебаний заряда выбирают формулу

q ( t ) = q max sin ω t .

Зависимость напряжения между обкладками конденсатора от времени описывается уравнениями:

U ( t ) = U max sin ( ω t + φ 0 ) или U ( t ) = U max cos ( ω t + φ 0 ) ,

где U max — максимальное значение напряжения ( амплитуда напряжения ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках максимальны), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках равны нулю), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max sin ω t .

Зависимость силы тока в катушке индуктивности от времени описывается уравнениями:

I ( t ) = I max sin ( ω t + φ 0 ) или I ( t ) = I max cos ( ω t + φ 0 ) ,

где I max — максимальное значение силы тока ( амплитуда силы тока ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если электромагнитные колебания начинаются при максимальной силе тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max cos ω t ;

2) если электромагнитные колебания начинаются при отсутствии силы тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max sin ω t .

При решении задач на электромагнитные гармонические колебания следует помнить, что одно полное колебание происходит за время, равное периоду колебаний; при этом любая из величин, изменяющихся по гармоническому закону (заряд, напряжение, сила тока), проходит ряд последовательных состояний, возвращаясь в исходное состояние с начальным значением соответствующей величины:

10 013 Домострой

1. Если колебания начинаются при полностью заряженном конденсаторе (рис. 10.13), то через время, равное:

  • четверти периода ( t = T /4), конденсатор полностью разряжается, а в катушке индуктивности течет максимальный ток в определенном направлении;
  • половине периода ( t = T /2), ток в катушке индуктивности полностью исчезает, а на обкладках конденсатора вновь появляется максимальный заряд, однако обкладки конденсатора меняют знак (полярность);
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности сила тока вновь принимает максимальное значение, однако ток в этом случае течет в противоположном направлении;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: конденсатор полностью заряжен, его обкладки имеют исходную полярность, ток в катушке индуктивности отсутствует.

2. Если колебания начинаются при максимальном токе в катушке индуктивности (рис. 10.14), то через время, равное:

10 014 Домострой

  • четверти периода ( t = T /4), ток в катушке полностью исчезает, а на обкладках конденсатора появляется максимальный заряд;
  • половине периода ( t = T /2), ток в катушке вновь принимает максимальное значение, однако направление тока при этом противоположно первоначальному, конденсатор полностью разряжается;
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности ток вновь отсутствует, а обкладки конденсатора заряжаются полностью, однако полярность обкладок (знак заряда) противоположная;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: в катушке течет максимальный ток в первоначальном направлении, а конденсатор полностью разряжен.

Мгновенные значения (значения в один и тот же произвольный момент времени) заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины заряда на обкладках конденсатора и напряжения между ними —

где q ( t ) — мгновенное значение заряда на обкладках конденсатора; C — электроемкость конденсатора; U ( t ) — мгновенное значение напряжения на его обкладках;

  • величины заряда на обкладках конденсатора и модуля силы тока в катушке индуктивности —

где I ( t ) — мгновенное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q * ( t ) — мгновенное значение заряда на обкладках конденсатора, q * ( t ) = q max cos(ω t + π/2).

Максимальные значения заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины максимального заряда на обкладках конденсатора и максимального значения напряжения —

где q max — максимальный заряд на обкладках конденсатора; C — электроемкость конденсатора; U max — максимальная разность потенциалов (напряжение) между обкладками конденсатора;

  • величины максимального заряда на обкладках конденсатора и максимального значения силы тока в катушке индуктивности —

где I max — максимальное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q max — максимальный заряд на обкладках конденсатора.

Пример 10. В идеальном контуре возбуждены электромагнитные гармонические колебания, в результате которых напряжение между обкладками конденсатора изменяется по закону

U ( t ) = 0,50 cos π t / 2 ,

где U — напряжение в вольтах; t — время в секундах.

Найти величину заряда на обкладках конденсатора через 0,50 с после начала колебаний, если конденсатор имеет электроемкость 20 мкФ.

Решение . Напряжение на обкладках конденсатора изменяется по гармоническому закону и через указанное время t = 0,50 с составляет

U = 0,50 cos π / 4 = 0,25 2 В.

Величина заряда на обкладках конденсатора связана с разностью потенциалов (напряжением) между ними формулой

где q — искомый заряд в указанный момент времени; C — электроемкость конденсатора, C = 20 мкФ; U — рассчитанная разность потенциалов (напряжение) между обкладками конденсатора в тот же момент времени, U = 0,25 2 В.

Отсюда следует, что искомый заряд определяется произведением

q = 20 ⋅ 10 − 6 ⋅ 0,25 2 ≈ 7,1 ⋅ 10 − 6 Кл = 7,1 мкКл.

Через 0,50 с после начала колебаний заряд конденсатора равен 7,1 мкКл.

«>

Читайте также  Конденсатосборник для коаксиального дымохода

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *