Максимальная энергия электрического поля конденсатора равна

Автор: | 12.03.2024

phys Домострой

agm3 Домострой

07.06.2019 meduza Домострой

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

На рисунке приведён график зависимости силы тока от времени в колебательном контуре с последовательно включёнными конденсатором и катушкой, индуктивность которой равна 0,2 Гн. Максимальное значение энергии электрического поля конденсатора равно W. Найдите W ответ укажите в миллиджоулях.

Для колебательного контура выполняется закон сохранения энергии: сумма энергий электрического поля в конденсаторе и магнитного поля в катушке а любой момент времени остается неизменной. Следовательно, максимальное значение энергии электрического поля конденсатора равно максимальному значению энергии магнитного поля катушки. Энергия магнитного поля катушки связана с величиной тока, текущего через нее, и индуктивностью катушки соотношением: 9e48981a52d9f7b02bdf20ce2886d1c2 ДомостройЭнергия достигает максимального значения, когда через катушку течет максимальный ток. Из графика видно, что амплитуда тока равна 5 мА. Следовательно, максимальное значение энергии магнитного поля катушки равно be56113afaa1cbceb4543ead585df608 Домострой

Проводники и диэлектрики, по-отдельности помещенные в электрическое поле, проявляют собственные индивидуальные качества. Именно проявление этих качеств сделало возможным применить их совместно. В результате, к электротехническим элементам добавились специальные устройства – конденсаторы. При проведении дальнейших исследований были установлены основные физические свойства этих устройств, в том числе и энергия электрического поля конденсатора, выделяемая в процессе его разрядки. Эта величина представляет собой потенциальную энергию, возникающую при взаимодействии обкладок конденсатора, поскольку, заряженные разноименно, они создают взаимное притяжение.

Емкость – основное свойство конденсатора

Прежде чем рассматривать энергию конденсатора, следует остановиться на его основном свойстве – емкости. Когда двум проводникам, изолированным один от другого, сообщаются заряды q1 и q2, между ними наблюдается появление определенной разности потенциалов Δφ. Данная разность полностью зависит от величины зарядов и геометрической конфигурации проводников. Эта величина, возникающая в электрическом поле между двумя точками, известна также, как напряжение, обозначаемое символом U.

24740085 Домострой

Наибольшее практическое значение имеют заряды проводников с одинаковым модулем и противоположными знаками: q1 = – q2 = q. С их помощью выводится такое понятие, как электрическая емкость системы, состоящей из двух проводников. Данная категория представляет собой физическую величину, в которой заряд q какого-либо проводника, соотносится с разностью потенциалов Δφ. В виде формулы это будет выглядеть следующим образом: 27614140 ДомостройСистемой СИ в качестве единицы электроемкости установлен фарад, который равен: 1Ф = 1Кл/1В

Электроемкость может иметь разную величину, в зависимости от форм и размеров проводников, а также от свойств диэлектрика, разделяющего эти проводники. Изменение значения емкости позволяет определить, как изменится энергия электрического поля конденсатора при использовании некоторых конфигураций проводников возникает электрическое поле, сосредоточенное лишь на определенном участке. Подобные системы получили название конденсаторов, в которых функцию обкладок выполняют проводники.

54862983 Домострой

Конструкция простейшего конденсатора включает в себя две плоские проводящие пластины, расположенные параллельно между собой на расстоянии, меньшем, чем толщина самих пластин. Обе пластины разделяет слой диэлектрика. Такая система получила название плоского конденсатора. Его электрическое поле локализуется преимущественно между пластинами. Кроме того, слабое поле возникает около краев пластин, а также в окружающем их пространстве. Оно называется полем рассеяния, которое не оказывает существенного влияния на многие решаемые задачи. Поэтому в большинстве случаев учитывается только электрическое поле, сосредоточенное только между обкладками конденсатора.

Модуль напряженности электрического поля, создаваемого заряженными пластинами плоского конденсатора, представляет собой соотношение: Е1 = Ϭ/2ε0. Соответственно, сумма напряженности каждой пластины, равна общей напряженности поля. Положительные и отрицательные векторы напряженности, расположены параллельно внутри конденсатора, поэтому напряженность суммарного поля будет равна: Е = 2Е1 = Ϭ/ε0. Вне пластин положительный и отрицательный векторы оказываются направленными в разные стороны, в связи с чем Е = 0.

59754881 Домострой

Заряд пластин обладает поверхностной плотностью Ϭ, равной q/S. В данной формуле q является величиной заряда, а S – площадью пластин. Разность потенциалов (Δφ) однородного электрического поля будет равна Ed, где величина d является расстоянием между пластинами. После соединения всех этих соотношений, получается формула, определяющая электрическую емкость плоского конденсатора:

14304041 Домострой

Из этой формулы видно, что между электроемкостью плоского конденсатора и площадью обкладок существует прямая пропорция, и обратная пропорция с расстоянием между этими обкладками.

Энергия электрического поля

Как показывает практика, все заряженные конденсаторы обладают определенным запасом энергии. Данная величина является равной работе внешних сил, затрачиваемой для зарядки конденсатора. Непосредственная зарядка конденсатора происходит в виде последовательного переноса зарядов небольшими порциями с одной пластины на другую. В это время осуществляется постепенная зарядка одной обкладки положительным зарядом, а другой – отрицательным.

Перенос каждой порции выполняется при наличии на обкладках некоторого заряда q. Между обкладками имеется определенная разность потенциалов. В связи с этим, в процессе переноса каждой порции заряда, внешними силами совершается работа: ΔА = UΔq = qΔq/C.

34949190 Домострой

Существует максимальная энергия электрического поля конденсатора, формула которой отображается таким образом: We = A = Q2/2C, где We – энергия конденсатора, А – работа, C и Q – соответственно емкость и заряд конденсатора. Если использовать соотношение Q = CU, то формула энергии заряженного конденсатора может быть выражена в другой форме: We = Q2/2C = CU2 = QU/2

Электрическая энергия We по своим физическим качествам аналогична потенциальной энергии, накопленной в заряженном конденсаторе. Как уже отмечалось, локализация электрической энергии конденсатора осуществляется между его обкладками, то есть в электрическом поле. Поэтому она получила название энергия электрического поля конденсатора, формула которой выводится из нескольких понятий и определений.

Если в качестве примера взять плоский заряженный конденсатор, то напряженность его однородного поля составит E = U/d, а его емкость будет равна С = ε0 εS/d. В результате, энергия электрического поля будет выражена в следующем виде: We = CU2/2 = ε0 εSЕ2d2/2d = (ε0 εЕ2/2) x V. В этой формуле V является пространственным объемом между обкладками, заполненным электрическим полем. Таким образом, We в качестве физической величины представляет собой электрическую или потенциальную энергию единицы пространственного объема, в котором существует электрическое поле. Эта величина также известна, как объемная плотность электроэнергии.

Исходя из опытов, заряженный конденсатор имеет запас энергии.

Энергия заряженного конденсатора равняется работе внешних сил, которая необходима для его зарядки.

Его заряжение представляется как последовательный перенос малых порций заряда ∆ q > 0 с одной обкладки на другую, как изображено на рисунке 1 . 7 . 1 Одна из них заряжается положительным зарядом, другая – отрицательным. Процесс производится при уже имеющемся некотором заряде q , тогда как между обкладками существует разность потенциалов U = q C , а при переносе ∆ q внешние силы совершают работу ∆ A = U ∆ q = q ∆ q C .

Нахождение энергии W e конденсатора с емкостью С и с зарядом Q производится с помощью интегрирования в переделах от 0 до Q . Формула примет вид:

W e = A = Q 2 2 C .

image013 Домострой

Рисунок 1 . 7 . 1 . Процесс зарядки конденсатора.

Энергия заряженного конденсатора

Существует еще одна эквивалентная запись заряженного конденсатора при использовании соотношения Q = C U :

W e = Q 2 2 C = C U 2 2 = Q U 2 .

Электрическая энергия W e рассматривается как потенциальная. Формулы для W e аналогичны формулам потенциальной энергии E p деформированной пружины, а именно:

E p = k x 2 2 = F 2 2 k = F x 2 , где k является жесткостью пружины, х – деформацией, F = k x – внешней силой.

Современные представления электрической энергии говорят о том, что она сосредоточена между пластинами конденсатора. В связи с этим и получила название энергии электрического поля. Это объяснимо с помощью иллюстрирования заряженного плоского конденсатора.

Объемная плотность электрической энергии

Напряженность однородного поля плоского конденсатора равняется E = U d , его емкость – C = ε 0 ε S d .

Отсюда следует, что W e = C · U 2 2 = ε 0 · ε · S · E 2 · d 2 2 d = ε 0 · ε · E 2 2 V , где V = S d обозначает объем пространства между обкладками с наличием электрического поля. Данное соотношение приводит к формуле следующей физической величины.

Физическая величина W e = ε 0 · ε · E 2 2 – это электрическая энергия на единицу объема пространства, в котором создается электрическое поле. Ее называют объемной плотностью данной электрической энергии.

Энергия поля конденсатора, создаваемая любыми распределениями электрических зарядов в пространстве, находится путем интегрирования W e по всему объему, в котором было создано электрическое поле.

Читайте также  Мышь плохо выделяет текст

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *