Магнитные линии магнитного поля тока представляют собой

Автор: | 12.03.2024

Существование магнитного поля вокруг проводника с электрическим током можно обнаружить различными способами. Один из таких способов заключается в использовании мелких железных опилок.

В магнитном поле опилки — маленькие кусочки железа — намагничиваются и становятся магнитными стрелочками. Ось каждой стрелочки в магнитном поле устанавливается вдоль направления действия сил магнитного поля.

На рисунке 94 изображена картина магнитного поля прямого проводника с током. Для получения такой картины прямой проводник пропускают сквозь лист картона. На картон насыпают тонкий слой железных опилок, включают ток и опилки слегка встряхивают. Под действием магнитного поля тока железные опилки рас полагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.

94 Домострой

Рис. 94. Картина магнитного поля проводника с током

Линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называют магнитными линиями магнитного поля.

Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.

Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля.

Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник.

С помощью магнитных линий удобно изображать магнитные поля графически. Так как магнитное поле существует во всех точках пространства, окружающего проводник с током, то через любую точку можно провести магнитную линию.

95 Домострой

Рис. 95. Расположение магнитных стрелок вокруг проводника с током

На рисунке 95, а показано расположение магнитных стрелок вокруг проводника с током. (Проводник расположен перпендикулярно плоскости чертежа, ток в нём направлен от нас, что условно обозначено кружком с крестиком.) Оси этих стрелок устанавливаются вдоль магнитных линий магнитного поля прямого тока. При изменении направления тока в проводнике все магнитные стрелки поворачиваются на 180° (рис. 95, б; в этом случае ток в проводнике направлен к нам, что условно обозначено кружком с точкой). Из этого опыта можно заключить, что направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.

Вопросы

  1. Почему для изучения магнитного поля можно использовать железные опилки?
  2. Как располагаются железные опилки в магнитном поле прямого тока?
  3. Что называют магнитной линией магнитного поля?
  4. Для чего вводят понятие магнитной линии поля?
  5. Как на опыте показать, что направление магнитных линий связано с направлением тока?

Упражнение 40

  1. Каким полюсом повернётся к наблюдателю магнитная стрелка, если ток в проводнике направлен от А к В (рис. 96)? Изменится ли ответ, если стрелку поместить над проводом?

96 Домострой

Рис. 96

  • В стене проложен (замурован) прямой электрический провод. Как найти место нахождения провода и направление тока в нём, не вскрывая стену?
  • Магнитные поля так же, как и электрические, можно изображать графически при помощи силовых линий. Магнитной силовой линией, или линией индукции магнитного поля, называют линию, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции поля.

    image079 Домострой image081 Домострой image083 Домострой
    а) б) в)

    Рис. 1.2. Силовые линии магнитного поля прямого тока (а),

    кругового тока (б), соленоида (в)

    Магнитные силовые линии так же, как и электрические, не пересекаются. Их прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) величине магнитной индукции магнитного поля в данном месте.

    На рис. 1.2, а приведены силовые линии поля прямого тока, которые представляют собой концентрические окружности, центр которых расположен на оси тока, а направление определяется правилом правого винта (ток в проводнике направлен на читателя).

    Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким магнитным стрелкам. На рис. 1.2, б показаны силовые линии магнитного поля кругового тока. Магнитное поле соленоида представлено на рис. 1.2, в.

    Силовые линии магнитного поля замкнуты. Поля, обладающие замкнутыми силовыми линиями, получили название вихревых полей. Очевидно, что магнитное поле – вихревое поле. В этом заключается существенное отличие магнитного поля от электростатического.

    В электростатическом поле силовые линии всегда разомкнуты: они начинаются и заканчиваются на электрических зарядах. Магнитные силовые линии не имеют ни начала, ни конца. Это соответствует тому, что в природе нет магнитных зарядов.

    1.4. Закон Био–Савара–Лапласа

    Французские физики Ж. Био и Ф. Савар провели в 1820 г. исследование магнитных полей, создаваемых токами, текущими по тонким проводам различной формы. Лаплас проанализировал экспериментальные данные, полученные Био и Саваром, и установил зависимость, которая получила название закона Био–Савара–Лапласа.

    image090 ДомостройСогласно этому закону, индукция магнитного поля любого тока может быть вычислена как векторная сумма (суперпозиция) индукций магнитных полей, создаваемых отдельными элементарными участками тока. Для магнитной индукции поля, создаваемого элементом тока длиной image092 Домострой, Лаплас получил формулу:

    image094 Домострой, (1.3)

    где image096 Домострой– вектор, по модулю равный длине image092 Домостройэлемента проводника и совпадающий по направлению с током (рис. 1.3); image099 Домострой– радиус-вектор, проведенный от элемента image092 Домостройв ту точку, в которой определяется image102 Домострой; image104 Домострой– модуль радиуса-вектора image099 Домострой.

    Модуль выражения (1.3) определяется формулой:

    image107 Домострой, (1.4)

    где image038 Домострой– угол между векторами image096 Домостройи image099 Домострой.

    Дата добавления: 2015-09-18 ; просмотров: 2355 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

    1. Линии, исходящие от проводника и уходящие в бесконечность

    2. Замкнутые кривые, охватывающие проводник

    3. Кривые, расположенные около проводника

    4. Линии, исходящие от проводника и заканчивающиеся на другом проводнике

    Читайте также  Нет накала на кинескопе телевизора

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *