Лекция генераторы переменного тока

Автор: | 12.03.2024

Принцип действия генератора переменного тока. В си­стемах электроснабжения пассажирских вагонов широко применяются генераторы переменного тока индукторного типа. В отличие от обычного синхронного генератора они не имеют обмоток на роторе и колец с щетками для подвода к нему тока. Такие генераторы по сравнению с генераторами постоянного тока ввиду отсутствия щеточно-коллекторного аппарата надежны в работе и требуют более простого ухода.

В индукторном генераторе (рис. 3.4) обмотки переменно­го тока 5 выполняются неподвижными и закладываются в пазы (впадины) статора 3, причем каждая обмотка охваты­вает один из зубцов 1. Обмотка возбуждения также непод­вижна и выполнена в виде двух кольцевых катушек 6 (тороидов), которые соединены последовательно и располо­жены в двух подшипниковых щитах 7. Ротор состоит из равномерно расположенных зубцов 10 и пазов 11, кото­рые образуют как бы полюса машины.

image022 Домострой

Рис. 3.4. Схема индукторного генератора переменного тока

с зубчатым ротором

Если через обмотки возбуждения 6 пропустить ток, то создается магнитный поток Ф, который замкнется по це­пи (штриховая линия). Он пройдет по подшипниковому щиту 7, через воздушный зазор 8, по втулке 9 ротора в осевом направлении, через зубцы 10 ротора, воздушный зазор 4, зубцы 1 статора, остов 2 и снова войдет в подшипниковый щит. При вращении ротора зубцы 1 ста­тора поочередно совпадают с зуб­цами 10 и пазами 11 ротора. При взаимном совпадении зубцов (рис. 3.5, а) между ними будет наимень­ший воздушный зазор, магнитное сопротивление также минимальное и обмотки W1, расположенные на данном зубце статора, пересекают­ся магнитным потоком Фмакс. При совпадении зубца статора с пазом ротора (рис. 3.5, б) зазор наибольший, магнитное сопротивление увеличивается и обмотки пересекаются

Читайте также  Надувные лодки для туризма

магнитным потоком Фмин. Таким образом, при вращении ротора пульсирует магнитный поток и в обмотках W1, расположенных на зубцах статора, индуктируется пере­менная ЭДС, а при подключении нагрузки в них потечет переменный ток.

image024 Домострой

Рис. 3.5 Изменение потока в зубцах статора

при различном положении ротора

В отличие от обычного синхронного генератора ма­гнитный поток, пронизывающий обмотки W1 статора, не изменяется по направлению (не меняет своего знака).

Вагонные генераторы типов ГСВ (синхронный вагон­ный генератор), ГВ (вагонный генератор) имеют на рото­ре шесть зубов и шесть пазов, которые образуют как бы пары полюсов р, поэтому эти генераторы являются 12-полюсными машинами. Частота переменной ЭДС (тока) зависит от частоты вращения ротора и числа пар полю­сов и определяется по формуле f = рn/60, откуда наи­большая частота переменного тока при наибольшей час­тоте вращения ротора 4000 об/мин равна 400 Гц.

Процесс самовозбуждения генератора происходит так же, как и в генераторе постоянного тока с параллельным возбуждением, за счет остаточного магнетизма. Причем основная обмотка возбуждения питается от обмотки ста­тора через специальный выпрямитель, а величина тока возбуждения и соответственно магнитного потока регули­руется или изменением индуктивного сопротивления (при РНГ с магнитным усилителем), или путем изменения дли­тельности импульсов тока (при РНГ на тиристоре).

Устройство генератора переменного тока. В системах электроснабжения применяются генераторы типов ГСВ-2, ГСВ-8, 2ГВ.001, 2ГВ.003, которые аналогичны по конст­руктивному исполнению и принципу действия. Отлича­ются они мощностью, которая на выходе выпрямителя для генераторов ГСВ-2 и ГСВ-8 составляет 5,5 кВт, для 2ГВ.001 — 6,5 кВт, для 2ГВ.003 — 8 кВт. Кроме того, схе­ма дополнительной обмотки статоров генераторов ГСВ-2, ГСВ-8 и 2ГВ.001 трехфазная, мостовая, а генератора 2ГВ.003 — однофазная с выводом средней точки. У гене­раторов ГСВ-2 и ГСВ-8 привод плоскоременный, у 2ГВ.001 — клиноременный, у 2ГВ.003 — ременно-редукторно-карданный.

Генераторы ГСВ-2, ГСВ-8 и 2ГВ.001 уста­новлены под кузовом вагона, 2ГВ.003 — на концевой бал­ке рамы тележки котловой стороны вагона.

Генератор переменного тока со смешанным возбужде­нием типа 2ГВ.003 применяется в системах электроснаб­жения ЭВ-7, ЭВ-10, ЭВ-20, ЭВ-26 (ЭВ — электрооборудо­вание вагонное), устанавливаемых на вагонах без конди­ционирования воздуха.

Весь мир в твоих руках — все будет так, как ты захочешь

Адрес: г. Новороссийск Телефон: Номер телефона Почта: kalinelena@yandex.ru

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Жизнь — как вождение велосипеда. Чтобы сохранить равновесие, ты должен двигаться

Тестирование

Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

lk48ft 6 Домострой

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока lk48ft 7 Домострой.

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

lk48ft 8 Домострой

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

lk48ft 13 Домострой

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

lk48ft 10 Домострой

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Читайте также:

  1. Автогенераторы
  2. Антенные устройства. Селекция радиосигналов
  3. Б. Метод постоянного числа предъявлений
  4. Б. Мужчина и женщина сбалансированного социума. Древнеегипетская скульптура. Коллекция Лувра.
  5. Бесколлекторные двигатели постоянного тока
  6. Виды и условия трудовой деятельности человека (Седьмая лекция)
  7. Влияние тяговых сетей электрической железной дороги постоянного тока
  8. ГАШЕНИЕ ЭЛЕКТРИЧЕСКИХ ДУГ В ЦЕПЯХ ПОСТОЯННОГО ТОКА
  9. Генератор постоянного напряжения
  10. Генератор постоянного тока. Устройство, принцип действия. Способы возбуждения. Э.Д.С. якоря и электромагнитный момент генератора постоянного тока.
  11. Генераторы
  12. Генераторы LC-типа.

Цель лекции:

— с областью применения генераторов постоянного тока;

— с генераторами различного возбуждения.

Содержание лекции:

— область применения генераторов постоянного тока;

— генератор независимого возбуждения;

— генератор параллельного возбуждения;

— генератор последовательного возбуждения;

— генератор смешанного возбуждения.

В тех случаях, когда по условиям производства необходим или предпочтителен большой ток (предприятия химической и металлургической промышленности, транспорт и др.), его получают, преобразуя переменный ток в постоянный с помощью преобразователей, в качестве которых широко применяют установки двигатель-генератор. В качестве источника энергии генераторы постоянного тока работают, главным образом, в изолированных установках (как возбудители синхронных машин), на автомашинах, самолетах, при сварке дугой, для освещения поездов, на кораблях и др.

Характеристики генератора постоянного тока. Свойства генераторов анализируют с помощью характеристик, устанавливающих зависимость между основными величинами, определяющими работу генератора: э.д.с. Е, напряжение на зажимах генератора U, ток возбуждения IВ, ток в якоре IЯ и частота вращения п. Так как генераторы чаще всего работают с постоянной частотой вращения, то основную группу характеристик снимают при неизменной частоте вращения (n=const). Напряжение U имеет наибольшее значение, поскольку оно определяет свойства генератора в отношении той сети, на которую он работает. Поэтому основными характеристиками являются:

а) нагрузочная U=f(IВ) при IЯ–const. В частном случае, когда IЯ=0, нагрузочная характеристика переходит в характеристику х.х., имеющую важное значение для оценки генератора и построения других характеристик;

в) регулировочная IВ=f(I) при U=const. В частном случае, когда U=0, регулировочная характеристика переходит в характеристику к.з. IК=f(IВ). Режим работы электрической машины при условиях, для которых она предназначена, называют номинальным режимом работы. Номинальный режим работы характеризуется величинами, обозначенными на заводском щитке машины как номинальные: напряжение, мощность, ток, частота вращения.

image183 Домострой

Рисунок 15.1 – Схема работы генератора

При работе нагруженного генератора в проводах обмотки якоря появляется ток iЯ=IЯ/(2a), в результате взаимодействия которого с основным магнитным полем машины на каждый проводник обмотки якоря действует сила

где BСР – среднее значение магнитной индукции в зазоре;

Величина электромагнитного момента (Н·м).

где N – число активных проводников обмотки якоря.

где СМ=рN/(2πа) – величина, постоянная для данной машины.

Дата добавления: 2014-12-07 ; Просмотров: 893 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *