Критический момент асинхронного двигателя не зависит от

Автор: | 12.03.2024

1422439292 20 ДомостройМеханические характеристики асинхронных двигателей могут быть выражены в виде n=f(M) или n = f ( I ). Однако часто механические характеристики асинхронных двигателей выражаются в виде зависимости M = f ( S), где S — скольжение, S = (nc-n)/nc , где n с — синхронная скорость.

На практике для графического построения механической характеристики пользуются упрощенной формулой, называемой формулой Клосса:

1422439323 11 Домострой

здесь: Мк — критическое (максимальное) значение момента. Этому значению момента отвечает критическое скольжение

1422439299 12 Домострой

Формула Клосса применяется при решении вопросов, связанных с электроприводом, осуществляемым с помощью асинхронного двигателя. Пользуясь формулой Клосса можно построить график механической характеристики по паспортным данным асинхронного двигателя. Для практических расчетов в формуле при определении критического момента перед корнем следует принимать во внимание только знак плюс.

1422439332 13 Домострой

Рис. 1. Асинхронный двигатель: а — принципиальная схема, б — механическая характеристика М=f(S) — естественная в двигательном и генераторном режимах, в — естественная механическая характеристика n=f(М) в двигательном режиме, г — искусственные реостатные механические характеристики, д — механические характеристики для различных напряжений и частот.

1422439298 14 Домострой

Асинхронный двигатель с короткозамкнутым ротором

Как видно из рис. 1, механическая характеристика асинхронного двигателя располагается в I и III квадрантах. Часть кривой в I квадранте соответствует положительному значению скольжения и характеризует двигательный режим работы асинхронного двигателя, а в III квадранте — генераторный режим. Наибольший практический интерес представляет двигательный режим.

График механической характеристики двигательного режима содержит три характерные точки: А, В, С и условно может быть подразделен на два участка: ОВ и ВС (рис. 1, в).

Точка А соответствует номинальному моменту двигателя и определяется по формуле Мн = 9,55 •10 3 • (P н/ n н)

Этому моменту соответствует номинальное скольжение, которое для двигателей общепромышленного применения имеет величину в пределах от 1 до 7%, т. е. Sн=1 — 7%. При этом мелкие двигатели имеют большее скольжение, а крупные — меньшее.

Двигатели с повышенным скольжением , предназначенные для работы с ударной нагрузкой, имеют S н

15%. К ним относятся, например, двигатели единой серии АС.

Точка С на характеристике соответствует величине начального вращающего момента , возникающего на валу двигателя при пуске. Этот момент Мп носит название начального, или пускового. Скольжение при этом равно единице, а скорость — нулю. Величину пускового момента легко определить по данным справочной таблицы, где указывается отношение пускового момента к номинальному Мп/Мн.

Величина пускового момента при постоянных величинах напряжения и частоты тока зависит от активного сопротивления в цепи ротора. При этом вначале с возрастанием активного сопротивления увеличивается величина пускового момента, достигая своего максимума при равенстве активного сопротивления цепи ротора и полного индуктивного сопротивления двигателя. В дальнейшем с возрастанием активного сопротивления ротора величина пускового момента уменьшается, стремясь в пределе к нулю.

Точка В (рис. 1,б и в) соответствует максимальному моменту , который может развивать двигатель на всем диапазоне скоростей от n = 0 до n = n с. Этот момент носит название критического (или опрокидывающего) момента Мк. Критическому моменту соответствует и критическое скольжение Sк. Чем меньше величина критического скольжения Sк, а также величина номинального скольжения S н, тем больше жесткость механической характеристики.

Как пусковой, так и критический моменты определяются через номинальный. Согласно ГОСТ на электрические машины для короткозамкнутого двигателя должно соблюдаться условие Мп/Мн = 0,9 — 1,2, Мк/Мн = 1,65 — 2,5.

Следует иметь в виду, что величина критического момента не зависит от активного сопротивления роторной цепи, в то время как критическое скольжение S к прямо пропорционально этому сопротивлению. Это означает, что с увеличением активного сопротивления роторной цепи величина критического момента остается неизменной, однако максимум кривой момента смещается в сторону возрастающих значений скольжения (рис. 1, г).

Величина критического момента прямо пропорциональна квадрату напряжения, подводимого к статору, и обратно пропорциональна квадрату частоты напряжений и частоты тока в статоре.

Если, например, напряжение, подводимое к двигателю, будет равно 85% номинального значения, то величина критического момента при этом составит 0,85 2 = 0,7225 = 72,25% критического момента при номинальном напряжении.

Обратное явление наблюдается при изменении частоты. Если, например, к двигателю, предназначенному для работы с частотой тока f = 60 гц, подвести ток частотой f = 50 гц, то критический момент получит в (60/50) 2 = 1,44 раза большее значение, чем при своей формальной частоте (рис. 1, д).

Критический момент характеризует собой мгновенную перегрузочную способность двигателя, т. е. он показывает, какую мгновенную (на несколько секунд) перегрузку способен перенести двигатель без каких-либо вредных последствий.

1422439306 15 Домострой

Участок механической характеристики от нулевого до максимального (критического) значения (см. рис. 1 , б и в) носит название устойчивой части характеристики , а участок ВС (рис. 1,в) — неустойчивой части .

Объясняется такое деление тем, что на возрастающей части характеристики ОВ с увеличением скольжения, т.е. с уменьшением скорости, растет развиваемый двигателем момент. Это означает, что при увеличении нагрузки, т. е. при возрастании тормозного момента, уменьшается скорость вращения двигателя, а развиваемый им момент увеличивается. При снижении нагрузки, наоборот, скорость возрастает, а момент уменьшается. При изменении нагрузки на всем диапазоне устойчивой части характеристики происходит изменение скорости вращения и момента двигателя.

Двигатель не в состоянии развить момент больше критического, и если тормозной момент окажется больше, двигатель неминуемо должен остановиться. Происходит, как принято говорить, опрокидывание двигателя .

Механическая характеристика при постоянных U и I и отсутствии добавочного сопротивления в цепи ротора называется естественной характеристикой (характеристика короткозамкнутого асинхронного двигателя с фазным ротором без добавочного сопротивления в цепи ротора). Искусственными, или реостатными, характеристиками называются такие, которые соответствуют добавочному сопротивлению в цепи ротора.

Все значения пусковых моментов различны между собой и зависят от активного сопротивления цепи ротора. Одному и тому же номинальному моменту Мн соответствуют скольжения различной величины. С увеличением сопротивления цепи ротора возрастает скольжение и, следовательно, уменьшается скорость вращения двигателя.

Благодаря включению в цепь ротора активного сопротивления механическая характеристика в устойчивой части вытягивается в сторону возрастания скольжения, пропорционально сопротивлению. Это означает, что скорость двигателя начинает сильно меняться в зависимости от нагрузки на валу и характеристика из жесткой делается мягкой.

Электромагнитный момент создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент М пропорционален электромагнитной мощности и определяется по формуле

img NKsk1n Домострой, а img amKEtV Домострой,

– угловая синхронная скорость вращения.

Зависимость момента от скольжения – механическая характеристика асинхронной машины. Механическая характеристика имеет максимум.

На рисунке 7.2 показана механическая характеристика асинхронной машины, где указаны зоны, соответствующие различным режимам работы:

Для анализа работы асинхронного двигателя удобнее воспользоваться механической характеристикой img 6LDyiZ Домострой, представленнойна рисунке 7.3.

При включении двигателя в электрическую сеть, магнитное поле статора, не обладая инерцией, сразу же начинает вращение с синхронной частотой n1 , в то же время ротор двигателя под влиянием сил инерции в начальный момент пуска остается неподвижным (img QwFmp9 Домострой) и скольжение s = 1.

Выражение пускового момента асинхронного двигателя:

img bwtrNp Домострой, Н·м,

Под действием этого момента начинается вращение ротора двигателя, при этом скольжение уменьшается, а вращающий момент возрастает в соответствии с характеристикой M = f(s). При критическом скольжении sкp момент достигает максимального значения Мmах. С дальнейшим нарастанием частоты вращения момент М начинает убывать, пока не достигнет установившегося значения.

img wepHjL Домострой

Рисунок 7.3 – Зависимость электромагнитного момента АД от скольжения

Из анализа механической характеристики следует, что устойчивая работа асинхронного двигателя возможна при скольжениях меньше критического (img 78FNqt Домострой), то есть на участке ОА механической характеристики. Работа асинхронного двигателя становитсянеустойчивой при скольжениях img VLaoZn Домострой. Так, если электромагнитный момент двигателяМ=Mmax, a скольжение s=sкр, то даже незначительное увеличение нагрузочного момента, вызвав увеличение скольжения s приведет к уменьшению момента М. За этим последует дальнейшее увеличение скольжения до s =1, то есть пока ротор не остановится. При достижении электромагнитным моментом максимального значения наступает предел устойчивой работы асинхронного двигателя.

Для надёжной работы асинхронного двигателя необходимо, чтобы он обладал перегрузочной способностью. Перегрузочная способность определяется отношением максимального момента img 2qn3lJ Домостройк номинальному моментуimg j8v5e1 Домостройи составляет для двигателей общего назначения

Рассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Мпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Мкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Из анализа формулы (*) на максимум можно получить соотношения для Мкр и Sкр

image049 Домострой; image050 Домострой.

Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.

Из выражения (*), разделив М на Мкр, можно получить формулу, известную под названием «формула Клосса», удобную для построения M = f(S).

image051 Домострой.

Если в эту формулу подставить вместо М и S номинальные значения момента и скольжения (Мн и Sн), то можно получить соотношение для расчета критического скольжения.

image052 Домострой.

Участок характеристики (рис. 2.14), на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Мн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется от Sкр до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

2.8. Механическая характеристика асинхронного двигателя

Под механической характеристикой принято понимать зависимость частоты вращения ротора в функции от электромагнитного момента n = f(M). Эту характеристику (рис. 2.15) можно получить, используя зависимость M = f(S) и пересчитав частоту вращения ротора при разных значениях скольжения.

image053 Домострой

Так как S = (n0 — n) / n0, отсюда n = n0(1 — S). Напомним, что n0 = (60 f) / p – частота вращения магнитного поля.

Участок 1-3 соответствует устойчивой работе, участок 3-4 – неустойчивой работе. Точка 1 соответствует идеальному холостому ходу двигателя, когда n = n0. Точка 2 соответствует номинальному режиму работы двигателя, ее координаты Мн и nн. Точка 3 соответствует критическому моменту Мкр и критической частоте вращения nкр. Точка 4 соответствует пусковому моменту двигателя Мпуск. Механическую характеристику можно рассчитать и построить по паспортным данным. Точка 1:

n0 = (60 f) / p, где: р – число пар полюсов машины; f – частота сети.

Точка 2 с координатами nн и Мн. Номинальная частота вращения nн задается в паспорте. Номинальный момент рассчитывается по формуле:

image054 Домострой

здесь: Рн – номинальная мощность (мощность на валу).

Точка 3 с координатами Мкр nкр. Критический момент рассчитывается по формуле Мкр = Мн λ. Перегрузочная способность λ задается в паспорте двигателя nкр = n0 (1 — Sкр), image055 Домострой, Sн = (n0 — nн) / n0 – номинальное скольжение.

Точка 4 имеет координаты n=0 и М=Мпуск. Пусковой момент вычисляют по формуле

Мпуск = Мн λпуск, где: λпуск – кратность пускового момента задается в паспорте.

Асинхронные двигатели имеют жесткую механическую характеристику, т.к. частота вращения ротора (участок 1–3) мало зависит от нагрузки на валу. Это одно из достоинств этих двигателей.

2.9. Совместная работа асинхронного двигателя с нагрузкой на валу

На рис. 2.16 рассматривается совместная работа асинхронного двигателя с нагрузкой на валу. Нагрузочный механизм (рис. 2.16 а) соединяется с валом двигателя и при вращении создает момент сопротивления (момент нагрузки). При изменении нагрузки на валу автоматически изменяется частота вращения ротора, токи в обмотках ротора и статора и потребляемый из сети ток. Пусть двигатель работал с нагрузкой Мнагр 1 в точке 1 (рис. 2.16 б). Если нагрузка на валу увеличится до значения Мнагр 2, рабочая точка переместится в точку 2. При этом частота вращения ротора снизится (n2 М1). Снижение частоты вращения ротора приводит к увеличению скольжения, увеличению токов в обмотках ротора и статора, т.е. к увеличению потребляемого из сети тока.

Читайте также  Недорогие кофемашины для дома цены

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *