Конденсатор включен в цепь переменного тока стандартной

Автор: | 12.03.2024

Reshak.ru — сборник решебников для учеников старших классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — сделанный для людей. Все решебники выполнены качественно, с приятной навигацией. Вы сможете скачать гдз, решебник английского, улучшить ваши школьные оценки, повысить знания, получить намного больше свободного времени.

Главная задача сайта: помогать школьникам в решении домашнего задания. Кроме того, весь материал гдз совершенствуется, добавляются новые сборники решений.

Информация

© adminbds Домостройreshak.ru

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

IMG 2264 Домострой

А вот если напрямую сделать, то горит:

IMG 2266 Домострой

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор част оты вполне сойдет:

IMG 2260 Домострой

Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой резистор на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:

IMG 2254 Домострой

Спаиваем как-то вот так и подаем сигнал с генератора частоты:

IMG 2261 Домострой

Далее за дело берется Цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем зде сь. Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.

IMG 2256 Домострой

Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:

Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.

Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “шумами“. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

%D1%81%D0%B4%D0%B2%D0%B8%D0%B3%D0%B3%D0%B3 Домострой

Давайте увеличим частоту на генераторе до 500 Герц

20140502 451157 Домострой

На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца

20140502 451405 Домострой

На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц

20140502 451654 Домострой

Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц

20140502 451733 Домострой

Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:

20140502 451931 Домострой

Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.

Если построить обрезок графика, то получится типа что-то этого:

%D0%A4%D0%92%D0%A7 Домострой

По вертикали я отложил напряжение, по горизонтали – частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:

20140502 495310 Домострой20140502 495519 Домострой20140502 495620 Домострой20140502 495829 Домострой20140502 495917 Домострой 20140502 500046 Домострой

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт( в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили Фильтр Высокой Частоты (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Ответы:

Ответы на похожие вопросы:

8м/с + 13 м/с = 21 м/с3км = 3000мt=3000м/21м/с=142,8с

Решение на рисунке.Желтый — поверхность стола.Красный — контуры мышкиСиний — цвет мышкиЧерный — сила.P. S. Цвета разные для ясности рисунка. Вы можете все нарисовать простым карандашом.

Смотря куда двигать мышь. Можно просто 2 клетки вправо влево вниз вверх, можно 2 клетки вверх+право и т.д

просто нарисуй стрелочку длиной в две клеточки))

давления в этом случае будут одинаковы

у первого газа давление будет в Z раз больше

конденсатор означает сгуститель — имеется в виду ""сгуститель электрического заряда""

Т.к. он предназначен для накопления и удержания на своих обкладках равные по значению и разные по знаку электрические заряды + Q и -Q.

Читайте также  Новогодние лайфхаки и поделки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *