Конденсатор на высоких частотах

Автор: | 12.03.2024

В многополосных акустических системах, кроме динамиков обязательно ставятся частотные фильтры. Это необходимо чтобы разделить полосу звука в зависимости от типа громкоговорителя. Все динамики можно разделить на следующие группы:

  • Низкочастотные
  • Среднечастотные
  • Высокочастотные
  • Широкополосные

85d62e57990f31438b28f5eb45bca6ad Домострой

Самые простые акустические системы, состоящие из одного широкополосного динамика, фильтров не имеют, но и диапазон воспроизведения такой системы невелик. Он может составлять 40-50 Гц – 12-16 кГц. Хорошие акустические системы включают в себя три динамика с разделением сигнала, поступающего от усилителя на три следующие полосы:

  • НЧ – 20 Гц-500 Гц
  • СЧ – 200 Гц-7000 Гц
  • ВЧ – 2000 Гц-22000 Гц

Разделение звукового сигнала на отдельные полосы осуществляется с помощью пассивных LC фильтров. Подключение ВЧ динамиков через конденсатор связано с необходимостью ограничения мощности на частотах, определяемых ёмкостью конденсатора. Дело в том, что высокочастотные «пищалки» имеют маленькие размеры и соответственно маленький диффузор, сделанный из твёрдого материала. Большая мощность низких частот может повредить высокочастотную динамическую головку. Кроме того «низы» воспроизводимые «пищалкой» будут звучать с сильными искажениями, нарушая всю звуковую картину.

Как подключить ВЧ динамик через конденсатор

7cae0c8cc1666a4cbe1a163588a2b486 Домострой

Схема подключения ВЧ головки, состоящая только из одного конденсатора называется фильтром или пассивным кроссовером первого порядка. Он называется «High-passfilter» и работает следующим образом. Ёмкость конденсатора определяет полосу среза. Это не означает, что звуковые частоты, располагающиеся ниже уровня среза, не будут воспроизводиться высокочастотным громкоговорителем.Кроссовер первого порядка имеет чувствительность 6 dB (децибел) на октаву. Октава это в два раза меньше или больше. Если величина среза равна 2 000 Герц, то частота, лежащая на октаву ниже, то есть 1 000 Герц будет воспроизводиться с уровнем на 6 dB меньше, снижение уровня на 500 Герц будет уже – 12 dB и так далее.

Читайте также  Магистральный фильтр для очистки воды отзывы

Исходя из размеров и жёсткости диффузора высокочастотного громкоговорителя, можно считать, что низкие частоты не окажут существенного влияния на воспроизведение ВЧ диапазона. Существуют более сложные кроссоверы второго порядка, в схему которого, кроме конденсатора, входит дроссель. Они обеспечивают снижение мощности в 12 децибел на октаву, а фильтры третьего порядка позволяют получить спад в 18 децибел на октаву.

Какой конденсатор ставить на ВЧ динамик

Для получения качественного звучания акустических систем, нужно очень тщательно подходить к выбору конденсатора. Какой конденсатор нужен для динамика ВЧ. Китайские производители недорогих колонок ставят последовательно с катушкой высокочастотного динамика электролит ёмкостью 2-10 мкф.

fb0e2f76227936fa558f8e17d71c0646 Домострой

Изделия такого типа являются полярными и по определению предназначены для работы в цепях постоянного тока. На переменном токе они ведут себя не совсем корректно, поэтому для подключения высокочастотного динамика в акустической системе из двух или трёх громкоговорителей нужно использовать плёночные изделия соответствующей ёмкости. Если имеется недорогая акустическая система китайского производства, то достаточно вскрыть её, и заменить электролит, на полипропиленовый или бумажный конденсатор, чтобы почувствовать разницу.

882f6003d1548715a023b8dd6a37d71f Домострой

Если необходимой ёмкости нет, то нужные конденсаторы для ВЧ динамиков собираются из нескольких изделий, соединённых параллельно.Из отечественной продукции можно использовать К73-17 и К78-34. Это лавсановые и полипропиленовые изделия. Тип К78-34 специально разработан для установки в фильтры высококачественных акустических систем. Он корректно работает на частотах до 22 кГц при выходной мощности колонок до 220 ватт с динамиками 4 Ом.

Чтобы правильно подобрать конденсатор для ВЧ динамика 4 Ом нужно знать его резонансную частоту. Высокочастотные головки могут иметь сравнительно низкую резонансную частоту порядка 800-1 200 Гц, но у большинства «пищалок» резонанс будет на 2 000-3 000 Гц. Величины конденсаторов для разных уровней среза к динамику 4 Ом выглядят следующим образом:

  • 5 000 Гц – 8,0 мкф
  • 6000 Гц – 6,5 мкф
  • 8000 Гц – 5,0 мкф
  • 9000 Гц – 4,4 мкф

Обрезать полосу, с помощью фильтра первого порядка, нужно выше резонанса, в противном случае колонка будет неприятно вибрировать при воспроизведении звука. Рекомендуется, чтобы частота среза фильтра примерно в два раза превосходила величину резонанса высокочастотного громкоговорителя.

Как известно, конденсаторы различных типов имеют характеристики, делающие их пригодными для одних и непригодными для других применений. Реальный конденсатор не является чистой емкостью, а обладает также сопротивлением и индуктивностью. Индуктивность L создается как выводами, так и структурой самого конденсатора .

Частотные характеристики конденсаторов являются важными параметрами, которые необходимы для разработки схем. Понимание частотных характеристик конденсатора позволит вам определить, например, какие шумы может подавлять конденсатор или какие флуктуации напряжения цепи питания он может контролировать. Эта статья описывает два типа частотных характеристик: |Z| (импеданс или полное сопротивление) и ESR (эквивалентное последовательное сопротивление конденсатора).

Импеданс Z идеального конденсатора определяется формулой 1, где ω — угловая частота, а C — емкость конденсатора.

idealniy condensator Домострой

Рисунок 1. Идеальный конденсатор

cap impedance Домострой(1)

Из формулы 1 видно, что с увеличением частоты импеданс конденсатора уменьшается. Это показано на рисунке 1. В идеальном конденсаторе нет потерь и эквивалентное последовательное сопротивление (ESR) равно нулю.

capacitor impedance 2 Домострой

Рисунок 2. Частотная характеристика идеального конденсатора

В реальном конденсаторе (рис. 3) существует некоторое сопротивление (ESR), вызванное диэлектрическими потерями, потерями на сопротивлении обкладок конденсатора и потерями связанные с сопротивлением утечки, а также паразитная индуктивность (ESL) выводов и обкладок конденсатора. В результате частотная характеристика импеданса принимает V образную форму (или U образную в зависимости от типа конденсатора), как показано на рисунке 4.Также на рисунке показана частотная характеристика ESR.

real capacitor Домострой

Рисунок 3. Реальный конденсатор

capacitor esr z Домострой

Рисунок 4. Пример частотной характеристики реального конденсатора

Причина, по которой графики |Z| и ESR имеют такой вид как на рисунке 4, можно объяснить следующим образом.

Низкочастотная область

|Z| в этой области уменьшается обратно пропорционально частоте, как и в идеальном конденсаторе. Значение ESR определяется диэлектрическими потерями в конденсаторе.

Область резонанса

При повышении частоты ESR, в результате паразитной индуктивности, сопротивления электродов и других факторов, вызывает отклонение |Z| от идеальной характеристики (красная пунктирная линия) и достигает минимального значения. Частота, на которой |Z| достигает минимума, называется собственной резонансной частотой и на этой частоте |Z| = ESR. После превышения собственной частоты резонанса, характеристика элемента меняется с емкостной на индуктивную и |Z| начинает повышаться. Область ниже собственной резонансной частоты называется емкостной областью, а область выше — индуктивной.
В области резонанса к диэлектрическим потерям добавляются потери на электродах.

Высокочастотная область

При дальнейшем увеличении частоты характеристика |Z| определяется паразитной индуктивностью конденсатора. В высокочастотной области |Z| увеличивается пропорционально частоте, согласно формуле 2. Что касается ESR, в этой области начинают проявляться скин-эффект , эффект близости и другие.

inductor Домострой(2)

Итак, мы рассмотрели частотную характеристику реального конденсатора. Здесь важно запомнить, что c повышением частоты ESR и ESL уже нельзя игнорировать. Поскольку существуют большое количество приложений, в которых конденсаторы используются на высоких частотах, ESR и ESL становятся важными параметрами, характеризующими конденсатор помимо значения его емкости.

Паразитные составляющие реальных конденсаторов имеют различное значение в зависимости от их типа. Давайте посмотрим на частотные характеристики разных конденсаторов. На рисунке 5 показаны графики |Z| и ESR для конденсаторов емкостью 10 мкФ. Все конденсаторы, кроме пленочных, планарные (SMD).

capacitor esr z 2 Домострой

Рисунок 5. Частотные характеристики конденсаторов разных типов.

Для всех типов конденсаторов |Z| ведет себя одинаково до частоты 1 кГц. После 1 кГц импеданс увеличивается сильнее в алюминиевых и танталовых электролитических конденсаторах, чем в монолитных керамических и пленочных конденсаторах.
Это происходит из-за того, что алюминиевые и танталовые конденсаторы имеют высокое удельное сопротивление электролита и большое ESR. В пленочных и монолитных керамических конденсаторах используются металлические материалы для электродов и, следовательно, они обладают очень маленьким ESR.
Монолитные керамические конденсаторы и пленочные показывают примерно одинаковые характеристики до точки собственного резонанса, но у монолитных керамических конденсаторов резонансная частота выше, а |Z| в индуктивной области ниже.
Эти результаты показывают, что импеданс монолитных керамических конденсаторов SMD типа в широком диапазоне частот имеет небольшое значение. Это делает их наиболее подходящими для высокочастотных приложений.

Существует также несколько типов монолитных керамических конденсаторов, изготовленных из различных материалов и имеющих различную форму. Давайте посмотрим, как эти факторы влияют на частотные характеристики.

ESR

ESR в емкостной области зависит от диэлектрических потерь, вызванных материалом диэлектрика. 2-й класс диэлектрических материалов на основе сегнетоэлектриков имеет высокую диэлектрическую постоянную и, как правило, высокое ESR. 1-ый класс материалов — температурно-компенсированные материалы на основе параэлектриков — имеют низкие диэлектрические потери и низкое ESR.
На высоких частотах в области резонанса и индуктивной области, в дополнение к сопротивлению материала электродов, их форме и количеству слоев, ESR зависит от скин-эффекта и эффекта близости. Электроды часто делают из Ni, но для дешевых конденсаторов иногда применяют Cu, который тоже имеет низкое сопротивление.

ESL

ESL монолитных керамических конденсаторов сильно зависит от внутренней структуры электродов. Если размеры внутренних электродов задаются длиной, шириной и толщиной, то индуктивность ESL может быть определена математически. Значение ESL уменьшается, когда электроды конденсатора короче, шире и тоньше.
На рисунке 6 показана связь между номинальной емкостью и резонансной частотой различных типов монолитных керамических конденсаторов. Вы можете видеть, что при уменьшении размеров конденсатора собственная резонансная частота увеличивается, а ESL уменьшается для одинаковых значений емкости. Это означает, что небольшие конденсаторы короткой длины лучше подходят для высокочастотных приложений.

capacitor self res f Домострой
Рисунок 6.

На рисунке 7 показан обратный LW конденсатор с короткой длиной L и большой шириной W. Из частотных характеристик, показанных на рисунке 8, можно увидеть, что LW конденсатор имеет меньший импеданс и лучшие характеристики, чем обычный конденсатор такой же емкости. С помощью LW конденсаторов можно достичь тех же характеристик, как у обычных конденсаторов, но меньшим числом компонентов. Уменьшение числа компонентов, позволяет сократить расходы и уменьшить монтажное пространство.

lw capacitor 2 Домострой

Рисунок 7. Внешний вид обратного LW конденсатора.

lw capacitor Домострой

Рисунок 8. |Z| и ESR обратного LW конденсатора и конденсатора общего назначения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *